MODULHANDBUCH

INFORMATIK

1-FACH-MASTER OF SCIENCE

VERSION 1.1
NACH DER PRÜFUNGSORDNUNG FÜR DEN 1-FACH-MASTER-STUDIENGANG INFORMATIK
(FASSUNG 22.10.2021)
<table>
<thead>
<tr>
<th>HERAUSGEBER:</th>
<th>Mathematisch-Naturwissenschaftliche Fakultät der Universität zu Köln</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDAKTION:</td>
<td>Prof. Dr. Andreas Vogelsang, Dr. Alexander Apke, Dr. Roman Wienands</td>
</tr>
<tr>
<td>ADRESSE:</td>
<td>Universität zu Köln, Department Mathematik/Informatik, Abteilung für Informatik, Albertus-Magnus-Platz 50923 Köln</td>
</tr>
<tr>
<td>E-MAIL</td>
<td>vogelsang@cs.uni-koeln.de, apke@cs.uni-koeln.de</td>
</tr>
<tr>
<td>STAND</td>
<td>08.01.2024</td>
</tr>
</tbody>
</table>
Kontaktpersonen

<table>
<thead>
<tr>
<th>Rollen</th>
<th>Namen</th>
<th>Kontaktinformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendekan</td>
<td>Prof. Dr. Axel Griesbeck</td>
<td>Department für Chemie, 0221 / 470 - 3083, griesbeck@uni-koeln.de</td>
</tr>
<tr>
<td>Studiengangsverantwortlicher</td>
<td>Prof. Dr. Andreas Vogelsang</td>
<td>Abteilung für Informatik, Department Mathematik/Informatik, 0221 / 470 - 89780, vogelsang@cs.uni-koeln.de</td>
</tr>
<tr>
<td>Prüfungsausschussvorsitzender</td>
<td>Prof. Dr. Andreas Vogelsang</td>
<td>Abteilung für Informatik, Department Mathematik/Informatik, 0221 / 470 - 89780, vogelsang@cs.uni-koeln.de</td>
</tr>
<tr>
<td>Fachstudienberater</td>
<td>Dr. Alexander Apke</td>
<td>Abteilung für Informatik, Department Mathematik/Informatik, 0221 / 470 - 76583, apke@cs.uni-koeln.de</td>
</tr>
</tbody>
</table>
Legende

<table>
<thead>
<tr>
<th>AM</th>
<th>Aufbaumodul</th>
<th>SM</th>
<th>Schwerpunktmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>Basismodul</td>
<td>SSt</td>
<td>Selbststudium</td>
</tr>
<tr>
<td>EM</td>
<td>Ergänzungsmodul</td>
<td>SWS</td>
<td>Semesterwochenstunde</td>
</tr>
<tr>
<td>K</td>
<td>Kontaktzeit (= Präsenzzeit in LV)</td>
<td>UzK</td>
<td>Universität zu Köln</td>
</tr>
<tr>
<td>LP</td>
<td>Leistungspunkte (engl.: CP)</td>
<td>VN</td>
<td>Vor- und Nachbereitungszeit</td>
</tr>
<tr>
<td>LV</td>
<td>Lehrveranstaltung</td>
<td>WL</td>
<td>Workload = Arbeitsaufwand</td>
</tr>
<tr>
<td>MM</td>
<td>Mastermodul</td>
<td>WP</td>
<td>Wahlpflichtveranstaltung</td>
</tr>
<tr>
<td>P</td>
<td>Pflichtveranstaltung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Kontaktpersonen ... 3

Legende ... 4

1 Das Studienfach Informatik .. 6
 1.1 Inhalte, Studienziele und Voraussetzungen .. 6
 1.2 Studienaufbau und -abfolge .. 7
 1.3 LP-Gesamtübersicht .. 8
 1.4 Semesterbezogene LP-Übersicht .. 8
 1.5 Berechnung der Gesamtnote ... 8

2 Modulbeschreibungen und Modultabellen ... 9
 2.1 Fachstudium Informatik ... 9
 2.2 Überfachliche Qualifikationen .. 68
 2.3 Masterarbeit .. 70

3 Studienhilfen .. 73
 3.1 Musterstudienplan .. 73
 3.2 Fach- und Prüfungsberatung .. 75
 3.3 Weitere Informations- und Beratungsangebote ... 76

Anhang A Anwendungsfelder ... 77
 A.1 Mathematik ... 77
 A.2 Physik ... 123
 A.3 Wirtschaftswissenschaften .. 140
 A.4 Volkswirtschaftslehre .. 193
 A.5 Digital Humanities .. 229
 A.6 Computational Biology ... 236
 A.7 Erde und Atmosphäre .. 245
1 Das Studienfach Informatik

1.1 Inhalte, Studienziele und Voraussetzungen

Der Masterstudiengang Informatik ist wissenschaftlich fundiert und vermittelt breites und in ausgewählten Teilgebieten vertieftes fachliches Wissen. Ferner werden nicht nur gegenwartsnah Inhalte vermittelt, sondern theoretisch untermauerte Konzepte und Methoden, die über aktuelle Trends hinweg Bestand haben und zum lebenslangen Lernen befähigen.

Die Absolvent:innen werden für die erfolgreiche Tätigkeit über das gesamte Berufsleben hinweg bzw. für weiterführende wissenschaftliche Studien auf diesem Gebiet qualifiziert. Abhängig von der Wahl der Schwerpunkte haben die Absolvent:innen stark ausgeprägte Kompetenzen in den Bereichen

- Algorithmik
- Data Science
- Artificial Intelligence
- Scientific Computing
- Visual Analytics
- Software Engineering

Alle diese Bereiche sind sowohl in der Wissenschaft als auch in der Industrie hochgradig relevant und gefragt.

Der Masterstudiengang ist als konsekutiver Studiengang zu geeigneten Bachelorstudiengängen Bachelor of Science (B.Sc.) konzipiert. Der Abschluss des entsprechenden Bachelorstudiums ist sowohl eine formale als auch eine inhaltliche Voraussetzung. Der Studiengang richtet sich an Studierende mit einem Bachelor in Informatik oder verwandten Studiengängen (z.B. Wirtschaftsinformatik, Wirtschaftsmathematik, Mathematik mit Nebenfach Informatik). Im Bachelor-studiengang müssen folgende Inhalte abgedeckt worden sein:

- Theoretische Informatik (min. 15 LP)
- Mathematik (min. 18 LP)
- Programmierung, Software Technologie, Informationssysteme (min. 18 LP)

Außerdem muss der Bachelor mindestens mit der Note 2,5 abgeschlossen worden sein. Da Lehrveranstaltungen sowohl auf Deutsch als auch auf Englisch angeboten werden, müssen Bewerber:innen für den Studiengang sowohl Deutschkenntnisse (DSH-2 oder gleichwertig) als auch Englischkenntnisse (Level B2) nachweisen.
1.2 Studienaufbau und -abfolge

Der Masterstudiengang Informatik umfasst (mindestens) 120 Leistungspunkte und ist auf eine Regelstudienzeit von vier Semestern angelegt. Das Studium kann sowohl im Winter- als auch im Sommersemester begonnen werden.

Abbildung 1: Aufbau des Master-Studiengangs Informatik

Anteil des Selbststudiums typischerweise deutlich höher, so dass hierfür sechs LP veranschlagt wurden für zwei SWS. Ähnliche bzw. identische Zuordnungen finden sich bei den meisten mathematisch/informatischen Studiengängen an deutschen Hochschulen.

1.3 LP-Gesamtübersicht

Das Studium der Informatik mit dem Studienziel Master umfasst 120 LP. Hiervon entfallen 90 LP auf die Informatik (inklusive Masterarbeit im Umfang von 30 LP), 24 LP auf das Anwendungsfeld und 6 LP auf überfachliche Qualifikationen.

<table>
<thead>
<tr>
<th>Fachstudium Informatik</th>
<th>60 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwendungsfeld</td>
<td>24 LP</td>
</tr>
<tr>
<td>Überfachliche Qualifikationen</td>
<td>6 LP</td>
</tr>
<tr>
<td>Master-Arbeit</td>
<td>30 LP</td>
</tr>
<tr>
<td>Gesamt</td>
<td>120 LP</td>
</tr>
</tbody>
</table>

1.4 Semesterbezogene LP-Übersicht

<table>
<thead>
<tr>
<th>LP-Übersicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachstudium Informatik</td>
</tr>
<tr>
<td>Anwendungsfeld</td>
</tr>
<tr>
<td>Überfachliche Qualifikationen</td>
</tr>
<tr>
<td>Master-Arbeit</td>
</tr>
<tr>
<td>Gesamt</td>
</tr>
</tbody>
</table>

1.5 Berechnung der Gesamtnote

2 Modulbeschreibungen und Modultabellen

2.1 Fachstudium Informatik

Es folgen die Modulbeschreibungen der einzelnen Veranstaltungen sortiert nach den Fachgebieten.

Fachgebiet Algorithmen und Theorie:

<table>
<thead>
<tr>
<th>Fachgebiet Algorithmen und Theorie</th>
<th>Modul</th>
<th>LP</th>
<th>P/WP</th>
<th>Soll LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM Algorithmen und Theorie I</td>
<td></td>
<td>9</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>BM Algorithmen und Theorie II</td>
<td></td>
<td>9</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>BM Algorithmen und Theorie III</td>
<td></td>
<td>9</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>AM Algorithmen und Theorie I</td>
<td></td>
<td>6</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>AM Algorithmen und Theorie II</td>
<td></td>
<td>6</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>EM Algorithmen und Theorie I</td>
<td></td>
<td>9</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>EM Algorithmen und Theorie II</td>
<td></td>
<td>6</td>
<td>WP</td>
<td></td>
</tr>
</tbody>
</table>

Basismodule:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>BM Effiziente Algorithmen / Efficient Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>BM-EA</td>
</tr>
<tr>
<td>Basismodul</td>
<td></td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-I-EA</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1.-3. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>SoSe</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur SoSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td>a) Vorlesung</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>60 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>120 h</td>
</tr>
<tr>
<td>geplante Gruppen-größe</td>
<td>unbeschränkt</td>
</tr>
<tr>
<td>2 Ziele des Moduls und zu erwerbende Kompetenzen</td>
<td></td>
</tr>
</tbody>
</table>
Inhalte des Moduls

Im Rahmen dieser Vorlesung werden fortgeschrittene algorithmische Konzepte wie beispielsweise Approximation und Randomisierung eingeführt. Es werden weiterführende Algorithmenentwurfsparadigmen wie z.B. primal-duale Algorithmen, LP Relaxierung oder randomisiert inkrementelle Algorithmen eingeführt und bekannte Entwurfsprinzipien wie gierige Algorithmen vertieft. Es werden fortgeschrittene Datenstrukturen wie perfektes Hashing, randomisierte Suchbäume oder Splaybäume besprochen.

Lehr- und Lernformen

- Vorlesung
- Übung

Modulvoraussetzungen

keine

Form der Modulprüfung/Modulabschlussprüfung

Klausur (120 Min.). Bei frühzeitiger Ankündigung kann, bei geringer Teilnehmendenzahl, die Modulabschlussprüfung in Form einer mündlichen Prüfung (20-30 Minuten) abgehalten werden.

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen der schriftlichen Prüfung

Verwendung des Moduls (in anderen Studiengängen)

Gesamtnote/Fachnote

9/114

Titel des Moduls

Einführung in die Mathematik des Operations Research

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul</td>
<td>BM-OR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kenn-</th>
<th>Work-</th>
<th>Leis-</th>
<th>Studien-</th>
<th>Häufigkeit</th>
<th>Beginn</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>nummer</td>
<td>load</td>
<td>tungs-</td>
<td>semester</td>
<td>des Ange-</td>
<td>des Ange-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>punkte</td>
<td></td>
<td>bots</td>
<td>bots</td>
<td></td>
</tr>
</tbody>
</table>

Deutsch oder Englisch
Lehrveranstaltungen

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Vorlesung</td>
<td>56 h</td>
<td>112 h</td>
<td>b) 30 Studierende</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
<td>28 h</td>
<td>56 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung</td>
<td>18 h</td>
<td>18 h</td>
<td></td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen

Inhalte des Moduls

1. Einführung: Stabile Matchings
2. Kürzeste Wege
3. Minimale Spannbäume
4. Polyedertheorie
5. Das Simplexverfahren
6. Die Ellipsoidmethode
7. Matrixspiele und LP Dualität
8. Matchings in bipartiten Graphen
9. Netzwerkflüsse
10. Ganzzahlige Optimierung und vollständig unimodulare Matrizen
11. Ganzzahlige Optimierung und vollständig duale ganzzahlige Systeme

Literatur: z.B.
- Schrijver - Theory of linear and integer programming
- Schrijver - Combinatorial optimization

Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.
<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung mit Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal: Zulassung zum Masterstudiengang Informatik, zu den Bachelorstudiengängen Mathematik, Wirtschaftsmathematik</td>
</tr>
<tr>
<td></td>
<td>Inhaltlich: Stoff der Vorlesungen Lineare Algebra I und II sowie Analysis I und II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das Modul ist in den Bachelorstudiengängen Mathematik, Wirtschaftsmathematik und im Masterstudiengang Informatik verwendbar.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9/114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. F. Vallentin</td>
</tr>
</tbody>
</table>

| 11 | Sonstige Informationen |

Titel des Moduls
Konvexe Optimierung

Art des Moduls
Basismodul

Kurztitel
BM-KO

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs punkte</th>
<th>Studien semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-M-KO</td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3. Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>
Ziele des Moduls und zu erwerbende Kompetenzen

Ziel des Moduls ist die Vermittlung einer Einführung in die theoretischen Grundlagen, in algorithmische Techniken und in mathematische Anwendungen aus Kombinatorik, Geometrie und Algebra. Nach erfolgreicher Teilnahme werden Studierende in der Lage sein,
- die grundlegenden Konzepte der semidefiniten Optimierung zu erklären
- Beispiele aus Kombinatorik, Geometrie und Algebra, die man mit Hilfe von semidefiniter Optimierung modellieren kann, anzuzeigen
- Semidefinite Programme mit Hilfe von Computersoftware zu lösen
- Optimierungsprobleme als semidefinite Programme zu modellieren

Inhalte des Moduls

1. Konische Optimierung: Konvexe Kegel, Konische Programme, Dualitätstheorie
2. Semidefinite Optimierung: Eigenwertoptimierung, Relaxierung quadratischer Programme
3. Das MAXCUT-Problem: Goemans-Williamson Algorithmus, Grothendieck-Ungleichung
4. Packungen und Fär-bungen in Graphen: Lovasz Theta Funktion, perfekte Graphen
5. Determinantenmaximierung: Loewner-John Ellipsoid
6. Das Kusszahlproblem: Die Schranke von Delsarte, Goethals und Seidel
7. Polynomielle Optimierung: Quadratsummen, Positivstellensätze
8. Algorithmen: Innere-Punkte-Methode, Ellipsoidmethode

Literatur: z.B.
<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung mit Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal: Zulassung zum Masterstudiengang Mathematik/Wirtschaftsmathematik</td>
</tr>
<tr>
<td></td>
<td>Inhaltlich: Einführung in die Mathematik des Operations Research</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das Modul ist in den Masterstudiengängen Mathematik, Wirtschaftsmathematik und Informatik verwendbar.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9/114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. F. Vallentin</td>
</tr>
</tbody>
</table>

| 11 | Sonstige Informationen |

Aufbaumodule:
Titel des Moduls
Randomisierte Algorithmen / Randomized Algorithms

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbaumodul</td>
<td>AM-RA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs punkte</th>
<th>Studien semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-RA</td>
<td>180 h</td>
<td>6 LP</td>
<td>1.-3. Semester</td>
<td>SoSe</td>
<td>nur SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
- a) Vorlesung
- b) Übung

2 Kontaktzeit
- 30 h
- 30 h

3 Selbststudium
- 60 h
- 60 h

Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden sind in der Lage, grundlegende randomisierte Algorithmen im Hinblick auf Ihre Performanz und Korrektheit zu analysieren. Sie können einfache Entwurfsprinzipien für randomisierte Algorithmen anwenden, wie z.B. randomisiert inkrementelle Algorithmen.

Inhalte des Moduls
In der Vorlesung Randomisierte Algorithmen werden grundlegende und fortgeschrittene Algorithmen und Datenstrukturen besprochen und analysiert, die Zufallsprozesse zur Steuerung des Algorithmus einsetzen. Ein einfaches Beispiel ist der randomisierte Quicksort Algorithmus, der das Pivotelement zufällig wählt.

Im Laufe der Vorlesung werden unterschiedliche Entwurfs- und Analysemethoden für randomisierte Algorithmen besprochen wie Linearität des Erwartungswertes, Random Walks, zufällige lineare Projektionen und zufällige Stichproben.

Lehr- und Lernformen
- Vorlesung
- Übung

Modulvoraussetzungen
Empfohlen: Effiziente Algorithmen

Form der Modulprüfung/Modulabschlussprüfung
Klausur (120 Min). Bei frühzeitiger Ankündigung kann, bei geringer Teilnehmendenzahl, die Modulabschlussprüfung in Form einer mündlichen Prüfung (20-30 Minuten) abgehalten werden.

Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Modulabschlussprüfung

Verwendung des Moduls (in anderen Studiengängen)

Gesamtnote/Fachnote
Titel des Moduls
Parametrisierte Algorithmen / Parameterized Algorithms

Art des Moduls
Aufbaumodul

Kenn-	Work-	Leis-	Studien-	Häufigkeit	Beginn	Dauer
nummer	load	tungs-	-semester	des Ange-	des Ange-	
		punkte		bots	bots	
MSc-I-PA	180 h	6 LP	1.-3. Semester	WiSe (unregelmä-ßig)	nur WiSe	1 Semester

Lehrveranstaltungen

a) Vorlesung
b) Übung

Kontaktzeit

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 h</td>
</tr>
<tr>
<td>30 h</td>
</tr>
</tbody>
</table>

Selbststudium

<table>
<thead>
<tr>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
</tr>
<tr>
<td>60 h</td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...

… beherrschen Techniken zum Entwerfen effizienter parametrisierter Algorithmen.

… sind in der Lage, grundlegende parametrisierte Algorithmen im Hinblick auf Ihre Performanz und Korrektheit zu analysieren.

… können einfache Entwurfsprinzipien für parametrisierte Algorithmen anwenden, wie bspw. FPT-Algorithmen oder parametrisierte Approximationsalgorithmen.

Inhalte des Moduls

In diesem Kurs geht es um den Entwurf schneller Algorithmen für NP-schwere Probleme, bei denen die Laufzeit von den Parametern der Eingabe abhängt. In diesem Rahmen werden wir mehrere algorithmische Techniken zum Entwerfen schneller Algorithmen für NP-schwere Probleme sehen, sogenannte FPT-Algorithmen (Fixed Parameter Tractable), sowie einen Überblick über die Methoden mit niedrigerer Grenze. In diesem Rahmen lernen wir auch Vorverarbeitungs- oder Datenreduktionsalgorithmen kennen, sogenannte Kernelisierungsalgorithmen, die in polynomialer Zeit ausgeführt werden und eine gegebene Instanz eines NP-schweren Problems auf eine äquivalente, aber viel kleinere Instanz reduzieren. Wir werden auch für dieses Paradigma Methoden mit niedrigeren...
<table>
<thead>
<tr>
<th>Grenzen sehen. Wir werden auch einige parametrisierte Approximationsalgorithmen sehen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Lehr- und Lernformen</td>
</tr>
<tr>
<td>Vorlesung</td>
</tr>
<tr>
<td>Übung</td>
</tr>
<tr>
<td>5 Modulvoraussetzungen</td>
</tr>
<tr>
<td>Empfohlen: Effiziente Algorithmen</td>
</tr>
<tr>
<td>6 Form der Modulprüfung/Modulabschlussprüfung</td>
</tr>
<tr>
<td>Klausur (120 Min). Bei frühzeitiger Ankündigung kann, bei geringer Teilnehmerendenzahl, die Modulabschlussprüfung in Form einer mündlichen Prüfung (20-30 Minuten) abgehalten werden.</td>
</tr>
<tr>
<td>7 Voraussetzungen für die Vergabe von Leistungspunkten</td>
</tr>
<tr>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
<tr>
<td>8 Verwendung des Moduls (in anderen Studiengängen)</td>
</tr>
<tr>
<td>9 Gesamtnote/Fachnote</td>
</tr>
<tr>
<td>6/114</td>
</tr>
<tr>
<td>10 Modulbeauftragte/r</td>
</tr>
<tr>
<td>Prof. Dr. Christian Sohler, Dr. Vibha Sahlot</td>
</tr>
<tr>
<td>11 Sonstige Informationen</td>
</tr>
<tr>
<td>Unterrichtssprache: Englisch</td>
</tr>
</tbody>
</table>

Titel des Moduls
Quantum Computing

Art des Moduls
Aufbaumodul

Kurztitel
AM-QC

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs- Punkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-QC</td>
<td>180 h</td>
<td>6 LP</td>
<td>1.-3. Semester</td>
<td>SoSe</td>
<td>nur SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<p>| 1 Lehrveranstaltungen |
| a) Vorlesung |
| b) Übung |
| Kontaktzeit |
| 45 h |
| 15 h |
| Selbststudium |
| 90 h |
| 30 h |
| geplante Gruppen-größe |
| unbegrenzt |</p>
<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course will:</td>
<td></td>
</tr>
<tr>
<td>- Acquaint participant with a physics, math, or computer science background with the mathematical frameworks of finite-dimensional multipartite quantum mechanics and of information processing.</td>
<td></td>
</tr>
<tr>
<td>- Introduce the paradigmatic phenomena that show the difference between classical and quantum information (Bell inequality violations, entanglement, no-cloning, teleportation...).</td>
<td></td>
</tr>
<tr>
<td>- Discuss practically relevant applications such as quantum key distribution and concrete quantum algorithms.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td></td>
</tr>
<tr>
<td>- Finite-dimensional quantum systems, tensor products, unitary gates, quantum circuits</td>
<td></td>
</tr>
<tr>
<td>- Bits, qubits, communication channels, circuit model of computation</td>
<td></td>
</tr>
<tr>
<td>Quantum Information</td>
<td></td>
</tr>
<tr>
<td>- Bell inequalities, entanglement, no-cloning, quantum teleportation</td>
<td></td>
</tr>
<tr>
<td>- Quantum channels and coding</td>
<td></td>
</tr>
<tr>
<td>- Quantum key distribution</td>
<td></td>
</tr>
<tr>
<td>Quantum Computation</td>
<td></td>
</tr>
<tr>
<td>- Grover's algorithm</td>
<td></td>
</tr>
<tr>
<td>- Shor's algorithm</td>
<td></td>
</tr>
<tr>
<td>- Brief introduction to quantum and classical complexity theory</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear algebra. Basic familiarity with quantum mechanics and computer science is advantageous, but a short introduction to both topics will be given at the beginning of the course.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>One oral or written exam (3 hours) at the end of the semester. To qualify for the exam, students must actively participate in the problem class, solve the homework problems and register for the exam.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Abschlussprüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Ergänzungsmodule:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>EM Algorithmen und Theorie I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Ergänzungsmodul</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-I-ATI</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungs- punkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1.-3. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td></td>
</tr>
<tr>
<td>b) Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erweitern ihre Fähigkeiten, systematisch Algorithmen und Datenstrukturen anhand von Entwurfsparadigmen selbstständig zu entwickeln und diese im Hinblick auf ihre Laufzeit und Korrektheit zu beurteilen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Rahmen dieser Vorlesung werden fortgeschrittene algorithmische Konzepte wie beispielsweise Approximation und Randomisierung eingeführt. Es werden weiterführende Algorithmenentwurfsparadigmen wie z.B. primal-duale Algorithmen, LP Relaxierung oder randomisiert inkrementelle Algorithmen eingeführt und bekannte Entwurfsprinzipien wie gierige Algorithmen vertieft. Es werden fortgeschrittene Datenstrukturen wie perfektes Hashing, randomisierte Suchbäume oder Splaybäume besprochen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach Ankündigung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Form der Modulprüfung/Modulabschlussprüfung</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Vergabe von Leistungspunkten</td>
</tr>
<tr>
<td>9</td>
<td>Gesamtnote/Fachnote</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
</tbody>
</table>

Titel des Moduls

EM Algorithmen und Theorie II

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Ergänzungsmodul</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennnummer</td>
<td>Workload</td>
<td>Leistungspunkte</td>
</tr>
<tr>
<td>MSc-I-ATII</td>
<td>180 h</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

1. **Lehrveranstaltungen**
 - a) Vorlesung
 - b) Übung
2. **Kontaktzeit**
 - 30 h
3. **Selbststudium**
 - 60 h

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2 Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Ziele des Moduls und zu erwerbende Kompetenzen</td>
<td>Die Studierenden erweitern ihre Fähigkeiten, systematische Algorithmen und Datenstrukturen anhand von Entwurfsparadigmen selbstständig zu entwickeln und diese im Hinblick auf ihre Laufzeit und Korrektheit zu beurteilen.</td>
</tr>
</tbody>
</table>

3. **Inhalte des Moduls**
 Im Rahmen dieser Vorlesung werden fortgeschrittene algorithmische Konzepte wie beispielsweise Approximation und Randomisierung eingeführt. Es werden weiterführende Algorithmenentwurfsparadigmen wie z.B. primal-duale Algorithmen, LP Relaxierung oder randomisiert inkrementelle Algorithmen eingeführt und bekannte Entwurfsprinzipien wie gierige Algorithmen vertieft. Es werden fortgeschrittene Datenstrukturen wie perfektes Hashing, randomisierte Suchbäume oder Splaybäume besprochen. |

4. **Lehr- und Lernformen**
<table>
<thead>
<tr>
<th>Modulvoraussetzungen</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach Ankündigung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Prüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
<th>8</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Gesamtnote/Fachnote</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulbeauftragter/r</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christian Sohler</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sonstige Informationen</th>
<th>11</th>
</tr>
</thead>
</table>

Fachgebiet Engineering Software-Intensiver Systeme:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul</td>
<td>LP</td>
<td>P/WP</td>
<td>Soll LP</td>
<td></td>
</tr>
<tr>
<td>BM Engineering Software-Intensiver Systeme I</td>
<td>9</td>
<td>WP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BM Engineering Software-Intensiver Systeme II</td>
<td>9</td>
<td>WP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM Engineering Software-Intensiver Systeme I</td>
<td>6</td>
<td>WP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM Engineering Software-Intensiver Systeme II</td>
<td>6</td>
<td>WP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM Engineering Software-Intensiver Systeme III</td>
<td>6</td>
<td>WP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM Engineering Software-Intensiver Systeme IV</td>
<td>6</td>
<td>WP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM Engineering Software-Intensiver Systeme I</td>
<td>9</td>
<td>WP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM Engineering Software-Intensiver Systeme II</td>
<td>6</td>
<td>WP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basismodule:
Als Basismodul Engineering Software-Intensiver Systeme I, II kann jeweils eine der Vorlesungen Requirements Engineering, IT-Security gewählt werden.

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Titel des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anforderungsmanagement / Requirements Engineering</td>
<td>Anforderungsmanagement / Requirements Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul</td>
<td>BM-RE</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>Workload</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>MSc-I-RE</td>
<td>270 h</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung

Kontaktzeit
 60 h
 30 h

Selbststudium
 120 h
 60 h

2 Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden…
 … haben ein Bewusstsein für die Bedeutung, Schwierigkeiten und Möglichkeiten des Requirements Engineering.
 … haben einschlägige Kenntnisse über Erhebung, Dokumentation, Analyse und Verwaltung von Anforderungen und sind in der Lage entsprechende Techniken anzuwenden
 … wissen, dass erfolgreiches Requirements Engineering sorgfältige Planung, systematische Vorgehensweise und Disziplin erfordern.
 … wissen, welche nicht-fachlichen Schwierigkeiten (z.B. Zeitökonomie, Kommunikations- und Abstimmungsprobleme, Schwierigkeiten in der Zusammenarbeit mit anderen) im Rahmen der Software-Erstellung auftreten können und wie man erfolgreich damit umgeht.

3 Inhalte des Moduls

Die Themen umfassen:

- Hintergrund und allgemeiner Überblick
- Fundamentale Prinzipien des Requirements Engineering
- Arbeitsprodukte und Dokumentationstechniken (natürlichsprachlich und modellbasiert)
- Praktiken zur Anforderungserhebung
- Validierung von Anforderungen
- Requirements Engineering Prozesse
- Requirements Management
- Tool Support

4 Lehr- und Lernformen

Vorlesung
Übung

5 Modulvoraussetzungen

Empfohlen: Basismodul Informatik (Programmierkurs), Aufbaumodul Informatik II (Softwaretechnik), Schwerpunktmodul Programmierpraktikum aus dem Bachelorstudiengang Wirtschaftsinformatik.
| 6 | Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung: KL (60) |
| 7 | Voraussetzungen für die Vergabe von Leistungspunkten
| 8 | Verwendung des Moduls (in anderen Studiengängen)
| 9 | Gesamtnote/Fachnote
9/114 |
| 10 | Modulbeauftragte/r
Prof. Dr. Andreas Vogelsang |
| 11 | Sonstige Informationen
Englisch |

Titel des Moduls
IT-Sicherheit / IT-Security

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul</td>
<td>BM-ITS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs punkte</th>
<th>Studien semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-ITS</td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3. Semester</td>
<td>SoSe</td>
<td>nur SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

| 1 | Lehrveranstaltungen
a) Vorlesung
c) Übung
Kontaktzeit
60 h
30 h
Selbststudium
120 h
60 h |
| 2 | Ziele des Moduls und zu erwerbende Kompetenzen
Nach erfolgreichem Abschluss der Lehrveranstaltung verfügen die Studierenden über Kenntnisse der grundlegenden Anwendungen symmetrischer Verfahren und über Grundkenntnisse der asymmetrischen Kryptographie. Sie können |
entscheiden, unter welchen Bedingungen man in der Praxis bestimmte Verfah-
ren einsetzt und wie die Sicherheitsparameter zu wählen sind. Mit den Grund-
lagen des abstrakten Denkens in der IT-Sicherheitstechnik sind sie vertraut.

Zum anderen erreichen die Studierenden durch Beschreibungen ausgewählter
praxisrelevanter Algorithmen, wie z. B. des AES, RSA, Diffie-Hellmann-Schlüs-
selaustausch oder ECC-basierten Verfahren, ein algorithmisches und techni-
sches Verständnis zur praktischen Anwendung. Die Studierenden erhalten da-
bei einen Überblick über die in Unternehmen eingesetzten Lösungen. Sie sind
in der Lage, argumentativ eine bestimmte Lösung zu verteidigen.

3 Inhalte des Moduls

Die Lehrveranstaltung bietet einen allgemeinen Einstieg in die Funktionsweise
moderner Kryptografie und Datensicherheit. Es werden grundlegende Begriffe
und mathematisch/technische Verfahren der Kryptografie und der Datensicher-
heit erläutert. Praktisch relevante symmetrische und asymmetrische Verfahren
und Algorithmen werden vorgestellt und an praxisrelevanten Beispielen erläu-
tert.

Die Vorlesung lässt sich in vier Teile gliedern: Die Funktionsweise der symmet-
rischen Kryptographie einschließlich der Beschreibung historisch bedeutender
symmetrischer Verschlüsselungsverfahren (Caesar Chiffre, Affine Chiffre) und
aktueller symmetrischer Verfahren (Data Encryption Standard, Advanced Enc-
ryption Standard, Stromchiffren, One Time Pad) werden im ersten Teil behan-
delt.

Der zweite Teil besteht aus einer Einleitung zu asymmetrischen Verfahren und
einem ihrer wichtigsten Stellvertreter (RSA). Hierzu wird eine Einführung der
Grundlagen der Zahlentheorie durchgeführt, um ein grundlegendes Verständ-
nis der Verfahren sicherzustellen (u.a. Ringe ganzer Zahlen, Gruppen, Körper,
diskrete Logarithmen, euklidischer Algorithmus). Nichtsdestotrotz liegt der
Schwerpunkt auf der algorithmischen Einführung des asymmetrischen Verfah-
rens.

Im dritten Teil werden die asymmetrischen Methoden fortgesetzt und die wich-
tigsten Stellvertreter (Diffie-Hellman, elliptische Kurven) diskutiert. Der Schwer-
punkt liegt auf der algorithmischen Einführung der asymmetrischen Verfahren,
die sowohl Verschlüsselungsalgorithmen als auch digitale Signaturen beinhal-
ten. Abgeschlossen wird dieser Teil durch Hashfunktionen, die eine große
Rolle für digitalen Signaturen und Message Authentication Codes (MACs oder
kryptografische Checksummen) spielen.

Im vierten Teil der Vorlesung werden Grundlagen von Sicherheitslösungen auf-
bauend auf den Konzepten der symmetrischen und asymmetrischen Krypto-
graphie besprochen. Dabei wird vor allem auf die in Unternehmen notwendigen
und eingesetzten Lösungen (PKI, digitale Zertifikate etc.) eingegangen.

4 Lehr- und Lernformen

- Vorlesung
- Übung

5 Modulvoraussetzungen

- Fähigkeit zum abstrakten und logischen Denken.

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. Dr. Andreas Vogelsang (Prüfungsausschussvorsitzender), N.N.

11 Sonstige Informationen

Aufbaumodule:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Empirical Software Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Aufbaumodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>AM-ESE</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-I-ESE</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1.-3. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>WiSe</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
</tr>
<tr>
<td></td>
<td>geplante Gruppengröße</td>
</tr>
<tr>
<td></td>
<td>20 Studierende</td>
</tr>
<tr>
<td>a) Vorlesung</td>
<td>20 h</td>
</tr>
<tr>
<td></td>
<td>10 h</td>
</tr>
<tr>
<td>b) Projekt</td>
<td>50 h</td>
</tr>
<tr>
<td></td>
<td>100 h</td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden…
… haben ein Bewusstsein für die Bedeutung von wissenschaftlicher Herangehensweise an praktische Fragestellungen im Software Engineering.

… kennen quantitative und qualitative empirische Methoden und deren Einsatzmöglichkeiten im Software Engineering

… können empirische Studien in Einsatzbereichen des Software Engineerings designen, durchführen und auswerten

… haben spezifisches Wissen in Bezug auf quantitative Forschungsmethoden (insbesondere kontrollierte Experimente)

3 Inhalte des Moduls

In der Lehrveranstaltung werden sowohl qualitative (Interviews, Feldstudien, ...) als auch quantitative (kontrollierte Experimente, Umfragen, ...) empirische Methoden vorgestellt. Es wird gezeigt, wie diese Arten von Studien designed, durchgeführt und ausgewertet werden. Dabei kommen Techniken aus der deskriptiven wie auch aus der Inferenzstatistik zum Einsatz (z.B. Hypothesentests).

Zu den Inhalten der Vorlesung gehören:

- Theorien im Software Engineering: Wie entsteht eigentlich Wissen?
- Forschungsstrategien und Messungen
- Deskriptive Statistik
- Kontrollierte Experimente und Hypothesentests

Neben der Vorlesung führen die Studierenden in einem angeleiteten Projekt eine eigene empirische Studie zu einer selbstgewählten Frage aus der Softwaretechnik durch.

4 Lehr- und Lernformen

Vorlesung, Projekt

5 Modulvoraussetzungen

Empfohlen: Basismodul Informatik (Programmierkurs), Aufbaumodul Informatik II (Softwaretechnik), Schwerpunktmödul Programmierpraktikum aus dem Bachelorstudiengang Wirtschaftsinformatik.

6 Form der Modulprüfung/Modulabschlussprüfung

Präsentation und Abschlussbericht

7 Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen der Prüfung (70% Abschlussbericht, 30% Präsentation)

8 Verwendung des Moduls (in anderen Studiengängen)

9 Gesamtnote/Fachnote
6/114

10 Modulbeauftragte/r
Prof. Dr. Andreas Vogelsang

11 Sonstige Informationen
Englisch

Titel des Moduls
Software Engineering for Embedded Systems

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbaumodul</td>
<td>AM-SEES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Work-Load</th>
<th>Leistungs-</th>
<th>Studien-semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-SEES</td>
<td>180 h</td>
<td>6 LP</td>
<td>1.-3. Semester</td>
<td>WiSe</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
a) Vorlesung
b) Übung

2 Kontaktzeit
30 h
30 h

Selbststudium
60 h
60 h

geplante Gruppengröße
unbegrenzt

2 Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden…

… haben ein Bewusstsein für die Bedeutung, Schwierigkeiten und Möglichkeiten des Software Engineering im Bereich Embedded Systems.

… wissen, dass gründliches und systematisches Requirements Engineering sowie sorgfältiger Grob- und Feinentwurf unabdingbar für den Erfolg eines Softwareprojekts sind und kennen entsprechende Techniken.

… kennen die wichtigsten Qualitätssicherungsmaßnahmen und sind in der Lage, gängige Qualitätssicherungsmaßnahmen sinnvoll einzuplanen und können diese umsetzen.

… kennen außerdem die wesentlichen Aspekte des Projektmanagements und Techniken zur Lösung der dabei anfallenden Aufgaben.

3 Inhalte des Moduls

Für die Entwicklung von guter und erfolgreicher Software braucht es mehr als nur Programmierkenntnisse. Softwaretechnik (engl. Software Engineering) be- schäftigt sich mit der systematischen Verwendung von Prinzipien, Methoden
und Werkzeugen für die arbeitsteilige, ingenieurmaßige Entwicklung und Anwendung von umfangreichen Softwaresystemen.

Dazu gehören die Themen:
- Anforderungen
- Software Architektur und Software Design
- Programmiertechniken und Richtlinien
- Wartung und Evolution
- Qualitätssicherung
- Testen
- Entwicklungsprozesse

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlen: Basismodul Informatik (Programmierkurs), Aufbaumodul Informatik II (Softwaretechnik), Schwerpunktmodul Programmierpraktikum aus dem Bachelorstudiengang Wirtschaftsinformatik.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Lehrenden der Abteilung Informatik</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 11 | Sonstige Informationen |</p>
<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Softwarequalität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td></td>
</tr>
<tr>
<td>o Aufbaumodul</td>
<td></td>
</tr>
<tr>
<td>Kurztitel</td>
<td>AM-SQ</td>
</tr>
<tr>
<td>Kennnummer</td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td>180</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab 2. Semester (Master)</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>WiSe</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>a) Vorlesung</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>b) Projekt o. Übung</td>
<td>Selbststudium</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td></td>
</tr>
<tr>
<td>30 h</td>
<td>50 h</td>
</tr>
<tr>
<td>30 h</td>
<td>70 h</td>
</tr>
<tr>
<td>2 Ziele des Moduls und zu erwerbende Kompetenzen</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden…</td>
<td></td>
</tr>
<tr>
<td>… haben ein Bewusstsein für die Bedeutung, Schwierigkeiten und Möglichkeiten der Softwarequalitätssicherung.</td>
<td></td>
</tr>
<tr>
<td>… haben einschlägige Kenntnisse über Qualitätseigenschaften und Qualitätssicherungstechniken für Softwaresysteme und sind in der Lage diese anzuwenden.</td>
<td></td>
</tr>
<tr>
<td>… wissen, um die Bedeutung von konstruktiven und analytischen Qualitätssicherungstechniken und können diese in Projekten anwenden.</td>
<td></td>
</tr>
<tr>
<td>3 Inhalte des Moduls</td>
<td></td>
</tr>
<tr>
<td>Qualität ist ein entscheidender Erfolgsfaktor für die Entwicklung sowie den Betrieb von Softwaresystemen und erfordert die Anwendung geeigneter Qualitätssicherungstechniken zu ihrer Sicherstellung. Diese Vorlesung gibt einen Überblick Softwarequalitätseigenschaften, über konstruktive und analytische Qualitätssicherungstechniken sowie über deren Anwendung in speziellen Anwendungsgebieten.</td>
<td></td>
</tr>
<tr>
<td>Zu den Themen der Lehrveranstaltung gehören:</td>
<td></td>
</tr>
<tr>
<td>▪ Moderne Softwareentwicklungsprozesse</td>
<td></td>
</tr>
<tr>
<td>▪ Qualitätseigenschaften von Software wie Zuverlässigkeit, Benutbarkeit oder Wartbarkeit und ihre Messung</td>
<td></td>
</tr>
<tr>
<td>▪ Verfahren zum Testen von Software</td>
<td></td>
</tr>
<tr>
<td>▪ Analyse von Software</td>
<td></td>
</tr>
<tr>
<td>▪ Qualitätssicherung in speziellen Anwendungsgebieten wie intelligenten, verteilten oder sicherheitskritischen Systemen</td>
<td></td>
</tr>
<tr>
<td>4 Lehr- und Lernformen</td>
<td></td>
</tr>
<tr>
<td>Vorlesung, Übung, Projekt</td>
<td></td>
</tr>
<tr>
<td>5 Modulvoraussetzungen</td>
<td></td>
</tr>
</tbody>
</table>
Empfohlen: Basismodul Informatik (Programmierkurs), Aufbaumodul Informatik II (Softwaretechnik), Programmierpraktikum

6 **Form der Modulprüfung/Modulabschlussprüfung**
Klausur und/oder Portfolio aus schriftlichen und mündlichen Prüfungsleistungen

7 **Voraussetzungen für die Vergabe von Leistungspunkten**

8 **Verwendung des Moduls (in anderen Studiengängen)**

9 **Gesamtnote/Fachnote**
6/114

10 **Modulbeauftragte/r**
Prof. Dr. Michael Felderer

11 **Sonstige Informationen**

Titel des Moduls
Sustainable Digital Innovation Lab

Art des Moduls
Aufbaumodul

Kurztitel
AM-SDIL

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-SDIL</td>
<td>180 h</td>
<td>6 LP</td>
<td>1.-3. Semester</td>
<td>WiSe</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen

a) Vorlesung
b) Übung

Kontaktzeit

30 h
30 h

Selbststudium

60 h
60 h

geplante Gruppengröße

10 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...

... analysieren reale Fragestellungen und Herausforderungen in den Bereichen: digitale Innovation, digitale Technologien, Informationssystementwicklung, Nachhaltigkeit.
... lösen teaminterne Konflikte und Zieldivergenzen selbstständig.
... präsentieren wissenschaftliche Ergebnisse adressatengerecht.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.
... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Einführung in globale Nachhaltigkeitsherausforderungen und digitale Innovationen</td>
<td></td>
</tr>
<tr>
<td>• Aufkommende digitale Technologiestapel (Hard- und Software)</td>
<td></td>
</tr>
<tr>
<td>• Systementwicklungspraktiken, die für komplexe Zusammenhänge und Anforderungen geeignet sind</td>
<td></td>
</tr>
<tr>
<td>• Entwicklung von Ideen zur Lösung der Designherausforderung</td>
<td></td>
</tr>
<tr>
<td>• Projekt- und Teammanagement</td>
<td></td>
</tr>
<tr>
<td>• Design und Implementierung von Informationssystemen</td>
<td></td>
</tr>
<tr>
<td>• Prototyping und Test</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der schriftlichen Prüfung eines Kurses. Ein Kurs ist zu besuchen; die schriftliche Prüfung bezieht sich auf den Inhalt eines Kurses</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolf Ketter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td></td>
</tr>
</tbody>
</table>
Titel des Moduls
Business Intelligence and Data Management

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbaumodul</td>
<td>AM-BIDM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs- punkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-BIDM</td>
<td>180 h</td>
<td>6 LP</td>
<td>1.-3. Semester</td>
<td>WiSe</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Vorlesung</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Kontaktzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 h</td>
</tr>
<tr>
<td></td>
<td>30 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 h</td>
</tr>
<tr>
<td></td>
<td>60 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>geplante Groupen- größe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 Studierende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden...</td>
</tr>
<tr>
<td></td>
<td>... analysieren reale Fragestellungen und Herausforderungen in der Datenanalyse, im Data Warehousing und Data Mining.</td>
</tr>
<tr>
<td></td>
<td>... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.</td>
</tr>
<tr>
<td></td>
<td>... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.</td>
</tr>
<tr>
<td></td>
<td>... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reporting und Online Analytical Processing (OLAP)</td>
</tr>
<tr>
<td></td>
<td>Mehrdimensionale Datenmodellierung (z.B. MetaMIS, ADAPT)</td>
</tr>
<tr>
<td></td>
<td>Design und Implementierung von Data Warehouses</td>
</tr>
<tr>
<td></td>
<td>Data Warehouse Schemata und Architekturen</td>
</tr>
<tr>
<td></td>
<td>Nicht-relationale Datenbanken (NoSQL/NewSQL)</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Verwaltung und Analyse großer Datensätze (z.B. Spark, Hadoop, MapReduce)</td>
</tr>
<tr>
<td></td>
<td>Data Mining und Business Analytics (Assoziationsregeln, Entscheidungsbäume, Clustering, künstliche neuronale Netze)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
</table>
7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der schriftlichen Prüfung eines Kurses. Ein Kurs ist zu besuchen; die schriftliche Prüfung bezieht sich auf den Inhalt eines Kurses

8 Verwendung des Moduls (in anderen Studiengängen)

9 Gesamtnote/Fachnote
6/114

10 Modulbeauftragte/r
Prof. Dr. Christoph Rosenkranz

11 Sonstige Informationen
Sprache: English. Der Kurs wird in einem projektbezogenen Format durchgeführt

Ergänzungsmodule:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Objektorientierte Softwareentwicklung / Object-Oriented Software Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Ergänzungsmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>EM-OOSE</td>
</tr>
<tr>
<td>Kennnummern</td>
<td>Workload</td>
</tr>
<tr>
<td>MSc-I-OOSE</td>
<td>180</td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td>a) Vorlesung</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Es werden wesentliche Themen des Software Engineerings objektorientiert behandelt (Anforderungen, Architektur, Implementierung, Testen) unter Zuhilfenahme moderner Softwareentwicklungstools (git, JUnit, Analysetools, objektorientierte Frameworks und Libraries).

Über die Objektorientierung hinaus werden Einblicke in andere wesentliche Programmierparadigmen und -techniken gegeben (Deklarativ, Systemnah, Reaktiv, Konkurrent).

3 Inhalte des Moduls
- Grundlagen Software Engineering, Entwicklungstools und -plattformen wie git, gitlab, IDEs etc.
- Paradigmen der Softwareentwicklung, Programmierung und Programmiersprachen
- Objektorientierte Programmierung und Modellierung
- Objekt- und Detailentwurf, Optimierung
- Objektorientierte Softwareentwicklung
- Qualitätssicherung und Testen
- Objektorientierte Frameworks und Libraries
- Moderne objekt-orientierte Entwicklung

Im Modul wird Fokus auf die Programmiersprache Java gelegt, es werden jedoch auch Themen in anderen Sprachen behandelt.

4 Lehr- und Lernformen
- Vorlesung
- Übung

5 Modulvoraussetzungen
Empfohlen: Basismodul Informatik (Programmierkurs), Aufbaumodul Informatik II (Softwaretechnik), Schwerpunktmodul Programmierpraktikum aus dem Bachelorstudiengang Wirtschaftsinformatik.

6 Form der Modulprüfung/Modulabschlussprüfung
- Klausur (60min)

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Modulabschlussprüfung. Die regelmäßige Teilnahme an den Übungen sowie die erfolgreiche Bearbeitung von Übungsaufgaben kann als Zulassungsvoraussetzung für die Prüfung herangezogen werden.

8 Verwendung des Moduls (in anderen Studiengängen)

9 Gesamtnote/Fachnote
- 6/114

10 Modulbeauftragte/r
Titel des Moduls
EM Engineering Software-Intensiver Systeme I

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Ergänzungsmodul</th>
<th>Kurztitel</th>
<th>EM-SEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennnummer</td>
<td>Workload</td>
<td>Leistungspunkte</td>
<td>Studiensemester</td>
</tr>
<tr>
<td>MSc-I-EMSEI</td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3. Semester</td>
</tr>
<tr>
<td>1</td>
<td>Lehrveranstaltungen</td>
<td>Kontaktzeit</td>
<td>Selbststudium</td>
</tr>
<tr>
<td>a) Vorlesung</td>
<td>60 h</td>
<td>120 h</td>
<td>1 Semester</td>
</tr>
<tr>
<td>b) Übung</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden erweitern ihre Fähigkeiten und Kenntnisse in Spezialbereichen zum Engineering Software-Intensiver Systeme.

Inhalte des Moduls

Lehr- und Lernformen
Vorlesung
Übung

Modulvoraussetzungen
Nach Ankündigung

Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung

Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der schriftlichen Prüfung. Bei entsprechender vorheriger Ankündigung kann die regelmäßige Teilnahme an den Übungen sowie die erfolgreiche Bearbeitung von Übungsaufgaben als Zulassungsvoraussetzungen für die Prüfung herangezogen werden sowie anteilig in die Prüfungsleistung eingehen. Zur Teilnahme an der Abschlussprüfung ist eine Anmeldung erforderlich; Pro
Turnus wird eine Wiederholungsklausur angeboten. Eine wiederholte Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Abschlussklausur ist möglich. Das Modul wird benotet.

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Lehrenden der Abteilung Informatik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
</table>

Titel des Moduls
EM Engineering Software-Intensiver Systeme II

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergänzungsmodul</td>
<td>EM-SEII</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kenn-numer</th>
<th>Work-load</th>
<th>Leistungs-punkte</th>
<th>Studien-semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-EMSEII</td>
<td>180 h</td>
<td>6 LP</td>
<td>1.-3. Semester</td>
<td>unregelmäßig</td>
<td>WiSe/SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td></td>
</tr>
<tr>
<td>b) Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 h</td>
<td>60 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erweitern ihre Fähigkeiten und Kenntnisse in Spezialbereichen zum Engineering Software-Intensiver Systeme.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach Ankündigung</td>
<td></td>
</tr>
</tbody>
</table>
6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Die Lehrenden der Abteilung Informatik

11 Sonstige Informationen

Fachgebiet Artificial Intelligence and Visual Analytics:

<table>
<thead>
<tr>
<th>Modul</th>
<th>LP</th>
<th>P/WP</th>
<th>Soll LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM Artificial Intelligence and Visual Analytics I</td>
<td>9</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>BM Artificial Intelligence and Visual Analytics II</td>
<td>9</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>BM Artificial Intelligence and Visual Analytics III</td>
<td>9</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>AM Artificial Intelligence and Visual Analytics I</td>
<td>6</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>AM Artificial Intelligence and Visual Analytics II</td>
<td>6</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>AM Artificial Intelligence and Visual Analytics III</td>
<td>6</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>AM Artificial Intelligence and Visual Analytics IV</td>
<td>6</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>EM Artificial Intelligence and Visual Analytics I</td>
<td>9</td>
<td>WP</td>
<td></td>
</tr>
<tr>
<td>EM Artificial Intelligence and Visual Analytics II</td>
<td>6</td>
<td>WP</td>
<td></td>
</tr>
</tbody>
</table>

Ergänzung: 12-21
Schwerpunkt: 21-30

Basismodule:

Titel des Moduls
Visual Analytics
<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul</td>
<td>BM-VA</td>
</tr>
</tbody>
</table>

Kenn-	Work-	Leis-	Studien-	Häufigkeit	Beginn	Dauer
nummer	load	tungs-	semester	des Ange-	des Ange-	
MSc-I-VA	270 h	punkte	1.-3.	bots	bots	1 Semester
		9 LP	Semester	SoSe	nur SoSe	

1	Lehrveranstaltungen	Kontaktzeit	Selbststudium	geplante Gruppengröße
a) Vorlesung	60	120	25 Studierende	
b) Übung	30	60		

2. Ziele des Moduls und zu erwerbende Kompetenzen

- verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Visual Analytics
- analysieren reale Fragestellungen und Herausforderungen im Bereich Visual Analytics
- erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
- begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.

3. Inhalte des Moduls

Visuelle Analyse kann man nutzen für Exploration, Analyse und Kommunikation von in Berichten, Präsentationen, oder online nutzen. Anwendungsbereiche sind zum Beispiel Finanzen, Wirtschaft, Geowissenschaften, Meteorologie, Medizin, Biologie, Transport, oder Sport.

4. Lehr- und Lernformen

<table>
<thead>
<tr>
<th>Lehr- und Lernformen</th>
<th>Vorlesung</th>
<th>Übung</th>
</tr>
</thead>
</table>

5. Modulvoraussetzungen

Programmieren, Algorithmen und Datenstrukturen
Empfohlen: Visualisierung, Software Engineering, Statistik

6. Form der Modulprüfung/Modulabschlussprüfung
<table>
<thead>
<tr>
<th>Schriftliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Learning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul</td>
<td>BM-ML</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-ML</td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3. Semester</td>
<td>SoSe</td>
<td>nur SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>b) Übung</td>
<td>60 h</td>
</tr>
<tr>
<td></td>
<td>30 h</td>
</tr>
<tr>
<td></td>
<td>120 h</td>
</tr>
<tr>
<td></td>
<td>60 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden…</td>
</tr>
<tr>
<td></td>
<td>… haben ein starkes theoretisches Verständnis der fundamentalen Konzepte des Maschinellen Lernens</td>
</tr>
<tr>
<td></td>
<td>… sind in der Lage, eigenständig Modelle des Maschinellen Lernens aufzustellen und zu evaluieren.</td>
</tr>
<tr>
<td></td>
<td>… können Modelle des Maschinellen Lernens anwenden, um praktische Probleme zu lösen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dieser Kurs führt die Studierenden in die grundlegenden Konzepte, Techniken und Algorithmen des maschinellen Lernens ein. Er umfasst die mathematischen und theoretischen Grundlagen, überwachte und unüberwachte Lern-</td>
</tr>
</tbody>
</table>

Folgende Themen werden behandelt:
- Einführung
- Probabilistische Inferenz
- Bäume und Wälder
- Neighbor-basierte Methoden
- Lineare Modelle
- (Konvexe) Optimierung
- Gradienten-basierte Optimierung
- SVMs
- Kerne
- Grundlagen des Deep Learning: MLPs, CNNs, GNNs
- Dimensionalitätsreduktion: PCA und tSNE
- SVD und Matrixfaktorisierung
- k-Means und GMMs
- Hierarchisches Clustering
- Robustheit
- Ungewissheit
- Privatsphäre
- Fairness

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
</tbody>
</table>

| 5 | Modulvoraussetzungen |

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur (120-180 Min)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9/114</td>
</tr>
</tbody>
</table>

| 10| Modulbeauftragte/r |
Als Basismodule Artificial Intelligence and Visual Analytics III kann die Vorlesung *Analytics and Applications* gewählt werden.

Titel des Moduls

Analytics and Applications

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul</td>
<td>BM-AA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs- punkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-AA</td>
<td>180 h</td>
<td>6 LP</td>
<td>1.-3. Semester</td>
<td>WiSe</td>
<td>nur WiSe</td>
<td>1 Semes- ter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen a) Vorlesung b) Übung</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppen-größe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Vorlesung</td>
<td>60</td>
<td>120</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
<td>30</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...

... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Data Science und Machine Learning.

... lösen teaminterne Konflikte und Zieldivergenzen selbstständig.

... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.

... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.

Inhalte des Moduls

- Unterschiedliche Verfahren aus dem Bereich Business Intelligence
- Datenanalyse und Business Analytics • Simulationen und Optimierungsverfahren
- Business Intelligence und Data Warehouse Konzepte
- Data-/ Text-/ Web-Mining
- Predictive modelling & Machine Learning
- Verfahren um Daten zu clustern
- Aus Daten Erkenntnisse gewinnen
| 4 | **Lehr- und Lernformen**
Vorlesung
Übung |
|----|----------------------------------|
| 5 | **Modulvoraussetzungen**
keine |
| 6 | **Form der Modulprüfung/Modulabschlussprüfung**
Schriftliche Prüfung |
| 7 | **Voraussetzungen für die Vergabe von Leistungspunkten**
Bestehen der Modulabschlussprüfung |
| 8 | **Verwendung des Moduls (in anderen Studiengängen)**
| 9 | **Gesamtnote/Fachnote**
6/114 |
| 10 | **Modulbeauftragte/r**
Prof. Dr. Wolf Ketter |
| 11 | **Sonstige Informationen**

Aufbaumodule:
Als Aufbaumodul Artificial Intelligence and Visual Analytics I - IV kann jeweils eine der Veranstaltungen **Visual Analytics Praktikum, Computerlinguistik, Statistik, Advanced Analytics and Applications** gewählt werden.

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Visual Analytics Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Kurztitel</td>
</tr>
<tr>
<td>Aufbaumodul</td>
<td>AM-VAP</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>Workload</td>
</tr>
<tr>
<td>MSc-I-VAP</td>
<td>180 h</td>
</tr>
<tr>
<td>1</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>a) Praktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verstehen und selbstständig Anwenden weiterführende, spezialisierte Methoden im Bereich Visual Analytics</td>
</tr>
<tr>
<td></td>
<td>analysieren reale Fragestellungen und Herausforderungen im Bereich Visual Analytics</td>
</tr>
<tr>
<td></td>
<td>erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.</td>
</tr>
<tr>
<td></td>
<td>Präsentieren und verteidigen (eigenständig erarbeitete) Problemlösungen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Lehrveranstaltung kann neben der Vertiefung der Fachkenntnisse auch zum Erwerb von Kommunikations- und Präsentationsfähigkeiten dienen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>von der individuellen Wahl der Studierenden abhängig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Programmieren, Algorithmen und Datenstrukturen, Mathematik?</td>
</tr>
<tr>
<td></td>
<td>Empfohlen: Modul Visualisierung, Visual Analytics, Statistik, Software Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Portfolio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wirtschaftsinformatik, Wirtschaftsmathematik, Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Tatiana Landesberger von Antburg</td>
</tr>
</tbody>
</table>
11 Sonstige Informationen
Englisch und Deutsch

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Computerlinguistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-CL</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-I-CL</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1.-3. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>SoSe</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur SoSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
a) Vorlesung
b) Übung

Kontaktzeit
30 h
30 h

Selbststudium
60 h
60 h

geplante Gruppengröße
35 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen

3 Inhalte des Moduls

4 Lehr- und Lernformen
Vorlesung, praktische Übung
<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
<th>keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Form der Modulprüfung/Modulabschlussprüfung</td>
<td>Schriftliche Prüfung</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Vergabe von Leistungspunkten</td>
<td>Bestehen der Prüfung</td>
</tr>
<tr>
<td>8</td>
<td>Verwendung des Moduls (in anderen Studiengängen)</td>
<td>Veranstaltungen des Moduls sind auch Teil des Moduls Computerlinguistik in den BA-Studiengängen „Informationsverarbeitung“ sowie „Linguistik und Phonetik.“</td>
</tr>
<tr>
<td>9</td>
<td>Gesamtnote/Fachnote</td>
<td>6/114</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r</td>
<td>Professur für Digital Humanities – Sprachliche Informationsverarbeitung</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
<td>Deutsch und englisch</td>
</tr>
</tbody>
</table>

Titel des Moduls
Statistik

Art des Moduls
Aufbaumodul

<table>
<thead>
<tr>
<th>Kenn-nummer MSc-M-Statistik</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>180</td>
<td>6 LP</td>
<td>1.-3. Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Vorlesung</td>
<td>30 h</td>
<td>60 h</td>
<td>30 Studierende</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen
Studierende sollten bei erfolgreicher Teilnahme die Fähigkeit besitzen, Daten mit Hilfe gängiger statistischer Methoden zu untersuchen und neue statistische Methoden zur Untersuchung von Daten kritisch zu bewerten.

<p>| 3 | Inhalte des Moduls | | | | | |</p>
<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
<th>Vorlesung mit Übungen</th>
</tr>
</thead>
</table>
| 5 | Modulvoraussetzungen | Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
Inhaltlich: Etwa entsprechend dem Modul „Einführung in die Stochastik“. |
| 6 | Form der Modulprüfung/Modulabschlussprüfung | Klausur oder mündliche Prüfung |
| 9 | Gesamtnote/Fachnote | 6/114 |
| 10 | Modulbeauftragte/r | Prof. Dr. Peter Mörters |
| 11 | Sonstige Informationen | Deutsch oder Englisch |

Titel des Moduls
Advanced Analytics and Applications

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbaumodul</td>
<td>AM-AAA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs punkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-AAA</td>
<td>180 h</td>
<td>6 LP</td>
<td>1.-3. Semester</td>
<td>SoSe</td>
<td>nur SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

46
1 Lehrveranstaltungen

<table>
<thead>
<tr>
<th>a) Vorlesung</th>
<th>b) Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontaktzeit</td>
<td>Selbststudium</td>
</tr>
<tr>
<td>30 h</td>
<td>60 h</td>
</tr>
<tr>
<td>30 h</td>
<td>60 h</td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...

... analysieren reale Fragestellungen und Herausforderungen in den Bereichen Data Science und Machine Learning

... lösen teaminterne Konflikte und Zieldivergenzen selbstständig.

... präsentieren wissenschaftliche Ergebnisse adressatengerecht.

... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.

... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.

3 Inhalte des Moduls

- Business Analytics Anwendungen
- Informationsqualität
- Erklärende Analytik
- Prädiktive Analytik
- Data-Mining-Prozess
- Prädiktive Modelle
- Klassifizierungsmethoden
- Clustering und Datenreduktionsverfahren
- Gaußsche Mischungsmodelle
- Stichprobenverfahren
- Neuronale Netze und Deep Learning
- Zeitreihen
- Kausale Inferenz
- Identifizierung von Behandlungseffekten
- Ensemble-Lernen
- Einführung in das Verstärkungslernen
- Programmiersprache: Python

4 Lehr- und Lernformen

- Vorlesung
- Übung

5 Modulvoraussetzungen

keine

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der schriftlichen Prüfung eines Kurses. Ein Kurs ist zu besuchen; die schriftliche Prüfung bezieht sich auf den Inhalt eines Kurses.

8 Verwendung des Moduls (in anderen Studiengängen)

9 Gesamtnote/Fachnote
6/114

10 Modulbeauftragte/r
Prof. Dr. Wolf Ketter

11 Sonstige Informationen
Englisch

Ergänzungsmodule:
Als Ergänzungsmodul Artificial Intelligence and Visual Analytics I - IV können die Veranstaltungen Advanced Machine Learning, Deep Learning oder eine weitere Veranstaltung aus einem wechselnden Katalog gewählt werden

Titel des Moduls
Advanced Machine Learning

Art des Moduls
Ergänzungsmodul

Kurztitel
EM-AML

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-AML</td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3. Semester</td>
<td>WiSe</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
a) Vorlesung
b) Übung

Kontaktzeit
60 h
30 h

Selbststudium
120 h
60 h

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden…
…haben ein starkes theoretisches Verständnis der weiterführenden Konzepte des Maschinellen Lernens
… sind in der Lage, eigenständig Modelle des Maschinellen Lernens aufzustellen und zu evaluieren.
... können fortgeschrittene Modelle des Maschinelles Lernens unter Verwendung realer Daten eigenständig implementieren, schulen und optimieren.

3 In der Vorlesung werden wir verschiedene fortgeschrittene Konzepte, Techniken und Algorithmen des maschinen Lernens behandeln. Wir werden uns sowohl auf die mathematischen als auch auf die theoretischen Aspekte konzentrieren, ebenso auf die die praktischen Aspekte, die die Implementierung, Schulung und Optimierung von Machine Learning Modellen unter Verwendung realer Datensätze umfassen.

Zu den Themen, die wir behandeln werden, gehören:
- Halbbeaufsichtigt Lernen
- maschinelles Lernen für Diagrammdaten
- maschinelles Lernen für sequentielle Daten
- Gaußsches Prozesse
- zeitliche Punktprozesse
- vertrauenswürdiges maschinelles Lernen
- fortgeschrittene Themen der Optimierung
- Theorie des maschinen Lernens
- Generative Modelle.

4 Lehr- und Lernformen
- Vorlesung
- Übung

5 Modulvoraussetzungen
Empfohlen: Machine Learning

6 Form der Modulprüfung/Modulabschlussprüfung
Klausur (120-180 Min)

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Modulabschlussprüfung

8 Verwendung des Moduls (in anderen Studiengängen)

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. Dr. Aleksandar Bojchevski

11 Sonstige Informationen
Englisch
Literatur
<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Deep Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Ergänzungsmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>EM-DL</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-I-DL</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungs punkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studien-semester</td>
<td>1.-3. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>WiSe (unregelmäßig)</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td></td>
<td>a) Vorlesung</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>60 h</td>
</tr>
<tr>
<td></td>
<td>30 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>120 h</td>
</tr>
<tr>
<td></td>
<td>60 h</td>
</tr>
<tr>
<td>2</td>
<td>Ziele des Moduls und zu erwerbende Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden…</td>
</tr>
<tr>
<td></td>
<td>… entwickeln ein Verständnis für die grundlegenden</td>
</tr>
<tr>
<td></td>
<td>Ideen und Konzepte des überwachten und unüberwachten</td>
</tr>
<tr>
<td></td>
<td>Deep Learning</td>
</tr>
<tr>
<td></td>
<td>… haben ein starkes mathematisches Verständnis der</td>
</tr>
<tr>
<td></td>
<td>Mechanismen und des Aufbaus neuronaler Netze</td>
</tr>
<tr>
<td></td>
<td>… können neuronale Netze mit Hilfe moderner Deep-</td>
</tr>
<tr>
<td></td>
<td>Learning-Frameworks und nutzen</td>
</tr>
<tr>
<td>3</td>
<td>Neue Entwicklungen auf dem Gebiet der tiefen</td>
</tr>
<tr>
<td></td>
<td>neuronalen Netze haben in den letzten Jahren eine</td>
</tr>
<tr>
<td></td>
<td>Vielzahl von Anwendungen ermöglicht, die bisher in</td>
</tr>
<tr>
<td></td>
<td>hoher Qualität unerwirkbar waren: Von der Bilderkennung,</td>
</tr>
<tr>
<td></td>
<td>Spracherkennung, Simulation der Proteinfaltung,</td>
</tr>
<tr>
<td></td>
<td>dem automatischen Spielen von Computerspielen bis</td>
</tr>
<tr>
<td></td>
<td>hin zur Bilderzeugung oder Sprachgenerierung mit</td>
</tr>
<tr>
<td></td>
<td>Systemen wie ChatGPT. In dieser Vorlesung werden</td>
</tr>
<tr>
<td></td>
<td>wir die Konzepte hinter tiefen neuronalen Netzen,</td>
</tr>
<tr>
<td></td>
<td>insbesondere Faltungs-Neuronalen Netzen, Aufmerksamkeitsmechanismen,</td>
</tr>
<tr>
<td></td>
<td>modernen Transformerarchitekturen und deren</td>
</tr>
<tr>
<td></td>
<td>Erweiterungen behandeln. Wir konzentrieren uns auf</td>
</tr>
<tr>
<td></td>
<td>überwachtes Deep Learning und unüberwachtes Deep</td>
</tr>
<tr>
<td></td>
<td>Learning, wobei für eine gegebene Aufgabe viele</td>
</tr>
<tr>
<td></td>
<td>Trainingsbeispiele zur Verfügung stehen und das</td>
</tr>
<tr>
<td></td>
<td>Netzwerk selbstständig aus diesen Daten lernt. In</td>
</tr>
<tr>
<td></td>
<td>der Vorlesung wird den Studierenden ein mathematisches</td>
</tr>
<tr>
<td></td>
<td>Verständnis der Mechanismen und des Aufbaus</td>
</tr>
<tr>
<td></td>
<td>neuronaler Netze vermittelt. Gleichzeitig werden</td>
</tr>
<tr>
<td></td>
<td>Beispiele gegeben, wie neuronale Netze mit Hilfe</td>
</tr>
<tr>
<td></td>
<td>moderner Deep-Learning-Frameworks wie PyTorch</td>
</tr>
<tr>
<td></td>
<td>effizient implementiert und genutzt werden können.</td>
</tr>
<tr>
<td>4</td>
<td>Lehr- und Lernformen</td>
</tr>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
</tbody>
</table>

50
5 **Modulvoraussetzungen**

6 **Form der Modulprüfung/Modulabschlussprüfung**
Klausur (120-180 Min)

7 **Voraussetzungen für die Vergabe von Leistungspunkten**
Bestehen der Modulabschlussprüfung

8 **Verwendung des Moduls (in anderen Studiengängen)**

9 **Gesamtnote/Fachnote**
9/114

10 **Modulbeauftragte/r**
Prof. Dr. Gereon Frahling

11 **Sonstige Informationen**
Unterrichtssprache: Englisch

Titel des Moduls
EM Artificial Intelligence and Visual Analytics I

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergänzungsmodul</td>
<td>EM-AII</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-EMAIL</td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3. Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 **Lehrveranstaltungen**
a) Vorlesung
b) Übung
Kontaktzeit
60 h
30 h
Selbststudium
120 h
60 h
geplante Gruppengröße
unbegrenzt

2 **Ziele des Moduls und zu erwerbende Kompetenzen**
verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Artificial Intelligence and Visual Analytics
analysieren reale Fragestellungen und Herausforderungen im Bereich Artificial Intelligence and Visual Analytics
erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.

3 Inhalte des Moduls
Anwendungsbereiche sind zum Beispiel Finanzen, Wirtschaft, Geowissenschaften, Meteorologie, Medizin, Biologie, Transport, oder Sport.
In den Übungen zur Vorlesung wird der Vorlesungsstoff vertieft. Die Übungen können neben der Vertiefung der Fachkenntnisse auch zum Erwerb von Kommunikations- und Präsentationsfähigkeiten dienen.

4 Lehr- und Lernformen
Vorlesung
Übung

5 Modulvoraussetzungen
Nach Ankündigung

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Prüfung

8 Verwendung des Moduls (in anderen Studiengängen)

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Die Lehrenden der Abteilung Informatik

11 Sonstige Informationen

Titel des Moduls
EM Artificial Intelligence and Visual Analytics II
<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergänzungsmodul</td>
<td>EM-AIVAII</td>
</tr>
</tbody>
</table>

Kenn-	Work-	Leis-	Studien-	Häufigkeit	Beginn	Dauer
nummer	load	tungs-	semester	des Ange-	des An-	
		punkte		bots	gebots	
MSc-I-AII	180 h	6 LP	1.-3. Semester	unregelmäßig	SoSe/WiSe	1 Semester

1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung
2 Kontaktzeit
 30 h
 30 h
3 Selbststudium
 60 h
 60 h
4 geplante Gruppengröße
 unbegrenzt

1 Ziele des Moduls und zu erwerbende Kompetenzen
 verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Artificial Intelligence and Visual Analytics
 analysieren reale Fragestellungen und Herausforderungen im Bereich Artificial Intelligence and Visual Analytics
 erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
 begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.

3 Inhalte des Moduls
 Anwendungsbereiche sind zum Beispiel Finanzen, Wirtschaft, Geowissenschaften, Meteorologie, Medizin, Biologie, Transport, oder Sport.
 In den Übungen zur Vorlesung wird der Vorlesungsstoff vertieft. Die Übungen können neben der Vertiefung der Fachkenntnisse auch zum Erwerb von Kommunikations- und Präsentationsfähigkeiten dienen.

4 Lehr- und Lernformen
 Vorlesung
 Übung

5 Modulvoraussetzungen
 Nach Ankündigung

6 Form der Modulprüfung/Modulabschlussprüfung
 Schriftliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten
 Bestehen der Prüfung
8 | Verwendung des Moduls (in anderen Studiengängen)

9 | Gesamtnote/Fachnote
 | 6/114

10 | Modulbeauftragte/r
 | Die Lehrenden der Abteilung Informatik

11 | Sonstige Informationen

Fachgebiet Wissenschaftliches Rechnen und High Performance Computing:

<table>
<thead>
<tr>
<th>Fachgebiet Wissenschaftliches Rechnen und High Performance Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul</td>
</tr>
<tr>
<td>BM Wissenschaftliches Rechnen und HPC I</td>
</tr>
<tr>
<td>BM Wissenschaftliches Rechnen und HPC II</td>
</tr>
<tr>
<td>BM Wissenschaftliches Rechnen und HPC III</td>
</tr>
<tr>
<td>AM Wissenschaftliches Rechnen und HPC I</td>
</tr>
<tr>
<td>AM Wissenschaftliches Rechnen und HPC II</td>
</tr>
<tr>
<td>EM Wissenschaftliches Rechnen und HPC I</td>
</tr>
<tr>
<td>EM Wissenschaftliches Rechnen und HPC II</td>
</tr>
</tbody>
</table>

Ergänzung: 12-21
Schwerpunkt: 21-30

Basismodule:
Als Basismodul Wissenschaftliches Rechnen und HPC I, II kann jeweils eine der Vorlesungen *Einführung in die Numerik partieller Differentialgleichungen*, *Numerik partieller Differentialgleichungen* gewählt werden.

Titel des Moduls
Einführung in die Numerik partieller Differentialgleichungen

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul</td>
<td>BM-ENPDG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs punkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc-M-END</td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3. Semester</td>
<td>WiSe</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 | Lehrveranstaltungen
 | a) Vorlesung
 | b) Übung

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>112 h</td>
</tr>
<tr>
<td>28 h</td>
<td>56 h</td>
</tr>
</tbody>
</table>

geplante Gruppengrösse
30 Studierende
<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Numerik partieller Differentialgleichungen für Anfangs- und Randwertaufgaben, wie Finite Differenzen, CFL-Bedingung, Finite Volumen, Riemann-Probleme, schwache Formulierungen, Regularität in Sobolevräumen, Galerkinmethoden, konforme Finite Elemente, Fehlerabschätzungen</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Weitere Literatur wird in der Vorlesung bekannt gegeben.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzvorlesung mit Tafelarbeit oder Beamer-Präsentation, schriftliche und computerunterstützte Übungen in Matlab/Octave</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal: Zulassung zum Studium der Mathematik/Wirtschaftsmathematik/Informatik mit dem Studienziel Bachelor/Master</td>
<td></td>
</tr>
<tr>
<td>Inhaltlich: Stoff der Vorlesungen Algorithmische Mathematik, Numerische Mathematik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul ist bestanden und die Leistungspunkte werden zuerkannt, wenn die 120-180 - minütige Abschlussklausur bestanden wird. Zulassungsvoraussetzung für die Klausur ist die regelmäßige erfolgreiche Bearbeitung der Übungsaufgaben. Die genauen Anforderungen gibt der/die jeweilige Dozent/-in zu Beginn der Veranstaltung bekannt. Zur Teilnahme an der Abschlussklausur ist</td>
<td></td>
</tr>
</tbody>
</table>
eine Anmeldung erforderlich; zu Beginn des Folgesemesters wird eine Wiederholungsklausur angeboten. Das Modul wird benotet. Die Note der Klausur ist die Modulnote. Eine wiederholte Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Abschlussklausur ist möglich.

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Bachelor-/Masterstudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. Dr. G. Gassner, Prof. Dr. A. Klawonn, Prof. Dr. A. Kunoth

11 Sonstige Informationen

Titel des Moduls
Numerik partieller Differentialgleichungen

Art des Moduls
Basismodul

Kurztitel
BM-NPDG

Kennennummer
MSc-M-NDg

Workload
270 h

Leistungspunkte
9 LP

Studiensemester
1.-3. Semester

Häufigkeit des Angebots
SoSe

Beginn des Angebots
nur SoSe

Dauer
1 Semester

1 Lehrveranstaltungen
a) Vorlesung
b) Übung

Prüfungsvorbereitung

Kontaktzeit
56 h
28 h

Selbststudium
112 h
56 h
18 h

geplante Gruppengröße
30 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen

56
auch dem Erwerb von Kommunikationsfähigkeiten und Präsentationskompe-
tenzen.

3 Inhalte des Moduls
Weiterführende, moderne Diskretisierungsansätze für partielle Differentialglei-
chungen verschiedener Art, wie gemischte und nichtkonforme Finite Elemente,
Diskontinuierliche Galerkin-Verfahren, Summation-by-Parts-Operatoren,
WENO-Finite Volumen-Verfahren, adaptive Ansätze. Moderne Techniken zur
schnellen Lösung der entstehenden diskreten Probleme, wie Mehrgitter- und
Multiskalenverfahren, Gebietszerlegungsmethoden.
Literatur:
S. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Methods,
J. S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods, 2008,
Springer-Verlag.
A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equa-
B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic
Equations, 2008, SIAM.
A. Toselli, O. B. Widlund, Domain Decomposition Methods – Algorithms and
R. Leveque, Finite Volumes Methods for Hyperbolic Problems, Cambridge Uni-
Originalarbeiten
Weitere Literatur wird in der Vorlesung bekannt gegeben.

4 Lehr- und Lernformen
Präsenzvorlesung mit Tafelarbeit oder Beamer-Präsentation, schriftliche und
computerunterstützte Übungen in Matlab/Octave

5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik/Wirtschaftsmathematik/Infor-
matik mit dem Studienziel Master
Inhaltlich: Stoff der Vorlesungen Algorithmische Mathematik, Numerische Ma-
thematik und Einführung in die Numerik partieller Differentialgleichungen

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das Modul ist bestanden und die Leistungspunkte werden zuerkannt, wenn die
120-180 - minütige Abschlussklausur bestanden wird. Zulassungsvorausset-
zung für die Klausur ist die regelmäßige erfolgreiche Bearbeitung der Übungs-
aufgaben. Die genauen Anforderungen gibt der/die jeweilige Dozent/-in zu Be-
ginn der Veranstaltung bekannt. Zur Teilnahme an der Abschlussklausur ist
eine Anmeldung erforderlich; zu Beginn des Folgesemesters wird eine Wieder-
holungsklausur angeboten. Die Klausurnote der Klausur ist die Modulnote.
Eine wiederholte Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Abschlussklausur ist möglich. Das Modul wird benotet.

8 **Verwendung des Moduls (in anderen Studiengängen)**
Das Modul ist verwendbar in den Masterstudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 **Gesamtnote/Fachnote**
9/114

10 **Modulbeauftragte/r**
Prof. Dr. G. Gassner, Prof. Dr. A. Klawonn, Prof. Dr. A. Kunoth

11 **Sonstige Informationen**
Als Basismodul Wissenschaftliches Rechnen und HPC III kann eine der Vorlesungen *Heterogeneous and parallel Computing* oder *Compute Continuum* gewählt werden.

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Heterogeneous and parallel computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-Het</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-I-Het</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1.-3. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>WiSe</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>a) Vorlesung</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>30 h</td>
</tr>
<tr>
<td></td>
<td>30 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>60 h</td>
</tr>
<tr>
<td></td>
<td>60 h</td>
</tr>
</tbody>
</table>

2 **Ziele des Moduls und zu erwerbende Kompetenzen**
Die Studierenden…
… ein umfassendes Verständnis der Prozessorarchitekturen und ihrer Unterschiede in modernen heterogenen Computerplattformen.
… verstehen die Auswirkungen der Prozessor- und Systemarchitektur auf die Anwendungsleistung und wissen, wie sich dies auf die Programmierung solcher Systeme auswirkt.
… sind in der Lage, die Vor- und Nachteile von Spezialisierung, Parallelisierung und Datenlokalität zu erklären und können Beispiele dafür geben, wie und wann diese Faktoren genutzt werden können.
...verstehen die Grenzen der Skalierbarkeit aufgrund von Kommunikationskosten und mangelnder Parallelität bzw. Menge an seriellem Code und können Skalierbarkeits- und Beschleunigungsdiagramme für parallele Anwendungen interpretieren und erklären.

...sind in der Lage zu argumentieren, wohin sich die Prozessor- und Systementwicklung entwickelt, warum und welche Probleme sich daraus ergeben werden.

3 Inhalte des Moduls

Der Kurs beginnt mit einem Überblick über aktuelle Prozessorsysteme und Entwicklungstrends in der Computerhardware hin zu einer zunehmenden Heterogenität und Spezialisierung, die durch den Bedarf an mehr Computerleistung und erhöhter Energieeffizienz angetrieben werden. Im ersten Teil des Kurses wird ein Grundwissen über die Prozessorarchitektur aus der Leistungsperspektive vermittelt.

Der dritte Abschnitt befasst sich mit der Spezialisierung von Systemen, die von eingebetteten Geräten und Multicore-Systemen bis hin zu spezialisierten Co-Prozessoren wie GPUs reicht. Die Auswirkungen der Spezialisierung auf die Leistung und Energieeffizienz, aber auch auf die Programmierbarkeit und Portabilität werden erläutert. Die zukünftigen Trends zu vollständig heterogenen Systemen auf allen Ebenen werden untersucht und bewertet.

Die Vorlesung schließt mit einem Ausblick darauf, wie sich Prozessoren in Zukunft voraussichtlich entwickeln werden und was dies für die Programmierbarkeit und Portabilität von Software bedeutet.

4 Lehr- und Lernformen

Vorlesung

Übung

5 Modulvoraussetzungen

6 Form der Modulprüfung/Modulabschlusssprüfung

Klausur (60-120 Min)

7 Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen der Modulabschlusssprüfung

8 Verwendung des Moduls (in anderen Studiengängen)

9 Gesamtnote/Fachnote

6/114
<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. Stefan Wesner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unterrichtssprache(n): Deutsch (primär), Englisch</td>
</tr>
</tbody>
</table>

Titel des Moduls
Compute Continuum

Art des Moduls
Basismodul

Kurztitel
BM-CoCo

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-CoCo</td>
<td>180 h</td>
<td>6 LP</td>
<td>1.-3. Semester</td>
<td>SoSe</td>
<td>nur SoSe</td>
<td>1 Semestre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td></td>
</tr>
<tr>
<td>b) Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 h</td>
<td>60 h</td>
</tr>
<tr>
<td>30 h</td>
<td>60 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden…</td>
</tr>
<tr>
<td></td>
<td>… verfügen über ein umfassendes Verständnis des aktuellen Stands der Technik bei organisationsübergreifenden und cloudbasierten Systemen.</td>
</tr>
<tr>
<td></td>
<td>… verstehen die Herausforderungen und Lösungsansätze für die Bereitstellung von Cloud-basierten Diensten aus der Sicht eines Rechenzentrumsbetreibers.</td>
</tr>
<tr>
<td></td>
<td>… verstehen die spezifischen Herausforderungen von verteilten und organisationsübergreifenden Cloud- und Edge-Computing-Szenarien.</td>
</tr>
<tr>
<td></td>
<td>… sind in der Lage, Clouds und lokale Systeme nach verschiedenen technischen und wirtschaftlichen Kriterien zu bewerten und zu vergleichen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Vorlesung ist in drei Haupteile gegliedert.</td>
</tr>
<tr>
<td></td>
<td>Im zweiten Teil der Vorlesung wird die Architektur und Technologie von Rechenzentren vorgestellt und aufgezeigt, wie die im ersten Teil vorgestellten</td>
</tr>
</tbody>
</table>

Der dritte Teil der Vorlesung befasst sich mit Multi-Cloud- und Edge-Computing-Systemen und ihren besonderen Fähigkeiten und Herausforderungen.

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
</tbody>
</table>

| 5 | Modulvoraussetzungen |
| | |

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur (60-120 Min)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. Stefan Wesner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unterrichtssprache(n): Deutsch (primär), Englisch</td>
</tr>
</tbody>
</table>

Aufbaumodule:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgewählte Themen der Numerischen Mathematik und des Wissenschaftlichen Rechnens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufbaumodul</td>
<td>AM-AKNMWR</td>
</tr>
</tbody>
</table>
1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung
 Prüfungsvorbereitung

Kontaktzeit
56 h
28 h

Selbststudium
112 h
56 h
18 h

geplante Gruppengröße
30 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen

3 Inhalte des Moduls
Ausgewählte Themen der Numerischen Mathematik und des Wissenschaftlichen Rechnens ist jeweils eine Spezialvorlesung, deren Inhalt vor Beginn des Semesters im Internet und durch Aushang von den Lehrenden bekannt gegeben wird.

Mögliche Themen sind:
Modellierung und Numerik von Problemen der Fluidynamik;
Modellierung und numerische Lösung kontinuumsmechanischer Probleme;
Modellierung und numerische Lösung medizinischer und bio-mechanischer Probleme;
Numerische Finanzmathematik;
Hyperbolische Erhaltungsgleichungen;
Paralleles Wissenschaftliches Rechnen/Hochleistungsrechnen;
Numerik stochastischer Differentialgleichungen;
Literatur: Originalarbeiten

4 Lehr- und Lernformen
Präsenzvorlesung mit Tafelarbeit oder Beamer-Präsentation, schriftliche und computerunterstützte Übungen
5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik/Wirtschaftsmathematik/Informatik mit dem Studienziel Master

Inhaltlich: Stoff der Vorlesungen Algorithmische Mathematik, Numerische Mathematik und Einführung in die Numerik partieller Differentialgleichungen; weitere Voraussetzungen werden in der jeweiligen Ankündigung angegeben.

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Masterstudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. Dr. G. Gassner, Prof. Dr. A. Klawonn, Prof. Dr. A. Kunoth

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Großer Lesekurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Aufbaumodul</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-M-glK</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1.-3. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>AM-GLK</td>
</tr>
</tbody>
</table>
1 Lehrveranstaltungen
a) Lesekurs
Prüfungsvorbereitung

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden können sich selbständig in ein aktuelles Gebiet der Numerischen Mathematik und des Wissenschaftlichen Rechnens einarbeiten. Sie können die erarbeiteten Inhalte kompetent präsentieren und über diese mit den Lehrenden sachkundig diskutieren.

3 Inhalte des Moduls
Die Studierenden können sich selbständig in ein aktuelles Gebiet der Numerischen Mathematik und des Wissenschaftlichen Rechnens einarbeiten. Sie können die erarbeiteten Inhalte kompetent präsentieren und über diese mit den Lehrenden sachkundig diskutieren.

4 Lehr- und Lernformen
Diskussionen von Lehrenden und Studierenden, selbständiges Literaturstudium, Tafel- oder Beamer-Vorträge, mündliches Abschlussgespräch mit den Lehrenden.

5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik/Wirtschaftsmathematik/Informatik mit dem Studienziel Master
Inhaltlich: Stoff der Vorlesungen Algorithmische Mathematik, Numerische Mathematik und Einführung in die Numerik partieller Differentialgleichungen; weitere Voraussetzungen werden in der jeweiligen Ankündigung angegeben.

6 Form der Modulprüfung/Modulabschlussprüfung
mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das Modul ist bestanden und die Leistungspunkte werden zuerkannt, wenn die 30-45-minütige mündliche Prüfung bestanden wird.

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Masterstudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. Dr. G. Gassner, Prof. Dr. A. Klawonn, Prof. Dr. A. Kunoth

11 Sonstige Informationen
Der Umfang entspricht einer Vorlesung mit 6 SWS.
Ergänzungsmodule:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>EM Wissenschaftliches Rechnen und HPC I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Ergänzungsmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>EM-WRI</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-I-EMWRI</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemestre</td>
<td>1.-3. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td></td>
<td>a) Vorlesung</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>60 h</td>
</tr>
<tr>
<td></td>
<td>30 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>120 h</td>
</tr>
<tr>
<td></td>
<td>60 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
<td>unbegrenzt</td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen

verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Wissenschaftliches Rechnen und HPC.
analysieren realer Fragestellungen und Herausforderungen im Bereich Wissenschaftliches Rechnen und HPC
begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.

Inhalte des Moduls

Anwendungsbereiche sind zum Beispiel Finanzen, Wirtschaft, Geowissenschaften, Meteorologie, Medizin, Biologie, Transport, oder Sport.
In den Übungen zur Vorlesung wird der Vorlesungsstoff vertieft. Die Übungen können neben der Vertiefung der Fachkenntnisse auch zum Erwerb von Kommunikations- und Präsentationsfähigkeiten dienen.

Lehr- und Lernformen

- Vorlesung
- Übung

Modulvoraussetzungen

Nach Ankündigung

Form der Modulprüfung/Modulabschlussprüfung

- Schriftliche Prüfung

Voraussetzungen für die Vergabe von Leistungspunkten
<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)
M.Sc. Mathematik, M.Sc. Wirtschaftsmathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Gesamtnote/Fachnote
9/114</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r
Die Lehrenden der Abteilung Informatik</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
</tbody>
</table>

Titel des Moduls
EM Wissenschaftliches Rechnen und HPC II

Art des Moduls
Ergänzungsmodul

Kurztitel
EM-WRII

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs punkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-EMWRII</td>
<td>180 h</td>
<td>6 LP</td>
<td>1.-3. Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 | **Lehrveranstaltungen**
a) Vorlesung
b) Übung |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ziele des Moduls und zu erwerbende Kompetenzen
verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Wissenschaftliches Rechnen und HPC.
analysieren realer Fragestellungen und Herausforderungen im Bereich Wissenschaftliches Rechnen und HPC
begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.</td>
</tr>
</tbody>
</table>

In den Übungen zur Vorlesung wird der Vorlesungsstoff vertieft. Die Übungen können neben der Vertiefung der Fachkenntnisse auch zum Erwerb von Kommunikations- und Präsentationsfähigkeiten dienen.

4 Lehr- und Lernformen
Vorlesung
Übung

5 Modulvoraussetzungen
Nach Ankündigung

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Prüfung

8 Verwendung des Moduls (in anderen Studiengängen)

9 Gesamtnote/Fachnote
6/114

10 Modulbeauftragte/r
Die Lehrenden der Abteilung Informatik

11 Sonstige Informationen

Schwerpunktmoodle **Seminar Informatik:**

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Seminar Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schwerpunktmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-S</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-I-S</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1.-3. Semester</td>
</tr>
<tr>
<td>Häufigkeit</td>
<td>WiSe/SoSe</td>
</tr>
<tr>
<td>Beginn des Ange-</td>
<td>WiSe/SoSe</td>
</tr>
<tr>
<td>bots</td>
<td></td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
Seminar
Kontaktzeit
30 h
Selbststudium
150
geplante Gruppengröße
15 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen
Inhalte des Moduls
Das Seminar vertieft den Studierenden bereits bekannte Themengebiete der Informatik, indem diese sich ein vorgegebenes Thema/Projekt eigenständig erarbeiten und in einer Seminararbeit sowie einem Vortrag vorstellen. Üblicherweise handelt es sich um ausgewählte Literatur aus einem Vertiefungsgebiet der Informatik, die in der Regel mit Kenntnissen aus mindestens einer Vorlesung des Angebots der Informatik für Masterstudierende studiert werden können.

Lehr- und Lernformen
Seminar

Modulvoraussetzungen
Empfohlen wird mindestens ein Modul aus dem Angebot der Informatik für Master-Studiengänge. Insbesondere kann ein bestimmtes Modul auch zur Zulassung vorausgesetzt werden, falls das Seminar dessen Themenbereich behandelt bzw. vertieft.

Form der Modulprüfung/Modulabschlussprüfung

Voraussetzungen für die Vergabe von Leistungspunkten
Vortrag, Ausarbeitung sowie eine regelmäßige Teilnahme wie in Punkt 6 beschrieben.

Verwendung des Moduls (in anderen Studiengängen)
Masterstudiengänge Informatik, Mathematik, Wirtschaftsmathematik, Information Systems

Gesamtnote/Fachnote
6/114

Modulbeauftragte/r
Die Lehrenden der Abteilung Informatik

Sonstige Informationen

2.2 Überfachliche Qualifikationen
Titel des Moduls
Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergänzungsmodul</td>
<td>EM-UeQ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-I-UeQ</td>
<td>180 h</td>
<td>6</td>
<td>1.-3. Semester</td>
<td>WiSe/SoSe</td>
<td>Nach Angebot</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
von der individuellen Wahl der/des Studierenden abhängig

Kontaktzeit
s. ausgewählte Lehrveranstaltungen

Selbststudium
s. ausgewählte Lehrveranstaltungen

geplante Gruppengröße
s. ausgewählte Lehrveranstaltungen

2 Ziele des Moduls und zu erwerbende Kompetenzen
Der/die Studierende kann nach erfolgreichem Abschluss des Moduls je nach Wahl der Kurse …

- Kenntnisse im Bereich Entrepreneurship erlangen (Entwicklung von Business Modellen, Prototypen, Professionell kommunizieren in Unternehmen uns Startups)
- sich mit fachübergreifenden Themen, Forschungsansätzen, Lösungskonzepten und Theorien auseinandersetzen
- Präsentations- und Schreibkompetenzen, Informationsbeschaffung, Vermittlungskompetenzen, Kommunikations- und Organisationskompetenzen, Fremdsprachen etc. in universitären und wissenschaftlichen Kontext anwenden.
- durch die Vertiefung in fachnahen Lehrinhalten ein individuelles Profil ausbilden
- sich mit anderen Fächern auseinandersetzen und ein Problembewusstsein für innovative und integrative Lösungsansätze entwickeln

3 Inhalte des Moduls
von der individuellen Wahl abhängig

4 Lehr- und Lernformen
Vorlesungen, Seminare, Übungen aus dem universitären Angebot

5 Modulvoraussetzungen
Einschreibung im Masterstudiengang Informatik
Formal: keine
Inhaltlich: keine

6 Form der Modulprüfung/Modulabschlussprüfung
von der individuellen Wahl abhängig
7 Voraussetzungen für die Vergabe von Leistungspunkten
von der individuellen Wahl abhängig

8 Verwendung des Moduls (in anderen Studiengängen)
Master Informatik

9 Gesamtnote/Fachnote
unbenotet; keine Berücksichtigung bei der Berechnung der Gesamtnote

10 Modulbeauftragte/r
Die oder der Vorsitzende des Prüfungsausschusses

11 Sonstige Informationen
Mögliche Lehrveranstaltungen:
Eine Liste mit möglichen Lehrveranstaltungen kann im Campusmanagement-
System KLIPS eingesehen und ausgewählt werden.
Die Studierenden haben darüber hinaus die Möglichkeit, die Anrechnung nicht
in KLIPS aufgeführter Lehrveranstaltungen für das Modul Überfachliche
Qualifikationen zu beantragen. Dazu ist eine Anfrage an das Prüfungsamt zu
senden, in dem der Name der Lehrveranstaltung genannt und schriftlich
begründet wird, inwiefern die unter Punkt 2 aufgeführten Ziele mit der
genannten Lehrveranstaltung verfolgt werden.

2.3 Masterarbeit
Zum Abschluss des Studiums fertigen die Studierenden eine Masterarbeit an. In ihr
sollen die Kandidat:innen zeigen, dass sie in der Lage sind, innerhalb der durch
die zu erwerbenden Leistungspunkte vorgegebenen Zeit ein substantielles Problem
aus einem aktuellen Gebiet der Informatik mit wissenschaftlichen Methoden zu
bearbeiten und schriftlich darzustellen. Die Kandidat:innen sollen in der Masterarbeit
zeigen, dass sie unter Anleitung die Fähigkeit erworben hat, selbstständig und mit
wissenschaftlichem Anspruch zu arbeiten. Die Masterarbeit kann in deutscher oder
englischer Sprache verfasst werden.

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Masterarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Masterarbeit</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-I-MA</td>
</tr>
<tr>
<td>Workload</td>
<td>900 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>30 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>4. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>studienbegleitend; das Modul ist nicht an Vorlesungszeiten gebunden</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>flexibel</td>
</tr>
<tr>
<td>Dauer</td>
<td>6 Monate</td>
</tr>
<tr>
<td>Nr.</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
<td>a) Masterarbeit</td>
</tr>
</tbody>
</table>

2 **Ziele des Moduls und zu erwerbende Kompetenzen**
Die Studierenden sollen zeigen, dass sie in der Lage sind, innerhalb der durch die Leistungspunkte vorgegebenen Zeit ein substantielles Problem aus einem aktuellen Gebiet der Informatik mit wissenschaftlichen Methoden selbstständig zu bearbeiten, zu reflektieren und schriftlich darzustellen. Sie lernen dabei, wissenschaftlich zu argumentieren und ihre Ergebnisse in Form eines Textes zu formulieren, der wissenschaftlichen Ansprüchen genügt. Aufgrund der begrenzten Bearbeitungszeit üben sich die Studierenden zudem in effektivem Zeitmanagement.

3 **Inhalte des Moduls**
Die Masterarbeit behandelt ein substantielles Problem aus einem aktuellen Gebiet der Informatik, welches abschließend schriftlich dargestellt werden soll. Der genaue Inhalt des Moduls ist abhängig von der Themenwahl der Studierenden.

4 **Lehr- und Lernformen**
Projekt

5 **Modulvoraussetzungen**
Formal: Vor der Ausgabe des Themas der Masterarbeit sollen mindestens 60 LP erworben sein. Ausnahmen regelt der Prüfungsausschuss.

Inhaltlich: Kenntnis der Inhalte diverser Vorlesungen und Seminare aus dem Forschungsgebiet, dem das Thema der Masterarbeit entstammt. Die genauen inhaltlichen Voraussetzungen hängen von der Wahl des Themas ab.

6 **Form der Modulprüfung/Modulabschlussprüfung**
Hausarbeit

7 **Voraussetzungen für die Vergabe von Leistungspunkten**

8 **Verwendung des Moduls (in anderen Studiengängen)**
Das Modul ist verwendbar im Masterstudiengang Informatik

9 **Gesamtnote/Fachnote**
30/114

10 **Modulbeauftragte/r**
<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Masterarbeit kann in deutscher oder englischer Sprache verfasst werden. Auf begründeten schriftlichen Antrag hin kann die oder der Vorsitzende des Prüfungsausschusses eine angemessene Nachfrist gewähren; der Antrag ist vor Ablauf der Frist im Prüfungsamt einzureichen.</td>
</tr>
</tbody>
</table>
3 Studienhilfen

3.1 Musterstudienplan

Die folgenden Musterstudienpläne entsprechen der Empfehlung des Instituts für Informatik. Unter Beachtung der jeweiligen Modulvoraussetzung kann auch eine andere Reihenfolge der Module gewählt werden, die idealerweise im Rahmen der Studienberatung besprochen werden sollte. Als Grundlage für die individuelle Gestaltung des Studienverlaufs sollte die über das Webangebot des Instituts für Informatik zur Verfügung gestellte mittelfristige Vorlesungsplanung herangezogen werden, s. https://cs.uni-koeln.de/lehre-studium/vorlesungsplanung

Mögliche Tracks könnten die folgenden sein:

- **Track „Data and Simulation Science“**
 o Schwerpunktgebiet: Wiss. Rechnen und HPC
 o Ergänzungsgebiet 1: Artificial Intelligence and Visual Analytics
 o Ergänzungsgebiet 2: Algorithmen und Theorie
 o Anwendungsfeld: Erde und Atmosphäre

- **Track „Data-Driven Systems Engineering“**
 o Schwerpunktgebiet: Engineering Software-Intensiver Systems
 o Ergänzungsgebiet 1: Artificial Intelligence and Visual Analytics
 o Ergänzungsgebiet 2: Algorithmen und Theorie
 o Anwendungsfeld: Wirtschaftswissenschaften

- **Track „Algorithm Engineering“**
 o Schwerpunktgebiet: Algorithmen und Theorie
 o Ergänzungsgebiet 1: Artificial Intelligence and Visual Analytics
 o Ergänzungsgebiet 2: Engineering Software-Intensiver Systems
 o Anwendungsfeld: Computational Biology

- **Track „Interactive Systems“**
 o Schwerpunktgebiet: Artificial Intelligence and Visual Analytics
 o Ergänzungsgebiet 1: Algorithmen und Theorie
 o Ergänzungsgebiet 2: Engineering Software-Intensiver Systems
 o Anwendungsfeld: Digital Humanities

Im Folgenden sind exemplarische Studienverläufe für diese vier Tracks angegeben:
Track Data and Simulation Science

<table>
<thead>
<tr>
<th>Semester</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachgebiet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ergänzungsgebiet I: Artificial Intelligence and Visual Analytics</td>
<td>BM AI und Visual Analytics I: Data And Information Science (9 LP)</td>
<td>AM AI und Visual Analytics I: Statistik (6 LP)</td>
<td>AM AI und Visual Analytics I: Einführung in die Mathematik des Operations Research (9 LP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weitere LV</td>
<td>Überfachliche Q. (6LP)</td>
<td>Seminar (6 LP)</td>
<td>Seminar (6 LP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>33</td>
<td>30</td>
<td>27</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Track Data-Driven Systems Engineering

<table>
<thead>
<tr>
<th>Semester</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachgebiet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ergänzungsgebiet I: Artificial Intelligence and Visual Analytics</td>
<td>BM AI und Visual Analytics I: Visual Analytics (8LP)</td>
<td>AM AI und Visual Analytics I: Visual Analytics Praktikum (6LP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anwendungsfeld: Wirtschaftswissenschaften</td>
<td>BM WIV I: Business Ethics (6LP)</td>
<td>AM WIV I: SM Elective Corporate Development I (6LP)</td>
<td>AM WIV I: SM Elective Corporate Development II (6LP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weitere LV</td>
<td>Überfachliche Q. (6LP)</td>
<td></td>
<td>Seminar (6 LP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Track Algorithm Engineering

<table>
<thead>
<tr>
<th>Semester</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachgebiet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ergänzungsgebiet I: Artificial Intelligence and Visual Analytics</td>
<td>BM AI und Visual Analytics I: Data And Information Science (9 LP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ergänzungsgebiet II: Engineering Software-Intensiver Systeme</td>
<td>AM Engineering Software-Intensiver Systeme I: Business Intelligence and Data Management (6 LP)</td>
<td>BM Engineering Software-Intensiver Systeme I: IT Security (6 LP)</td>
<td>BM Engineering Software-Intensiver Systeme I: IT Security (6 LP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anwendungsfeld: Computational Biology</td>
<td>BM Computational Biology (12 LP)</td>
<td>AM Computational Biology (12 LP)</td>
<td>AM Computational Biology (12 LP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weitere LV</td>
<td>Überfachliche Q. (8LP)</td>
<td>Seminar (6 LP)</td>
<td>Seminar (6 LP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
3.2 Fach- und Prüfungsberatung

Schließlich bietet die Fachschaft Departments Mathematik/Informatik umfangreiche Hilfestellung für die Studierenden an. Dies umfasst z.B. Orientierungseinheiten zu Beginn des Studiums, aber auch Beratungstätigkeiten während des Studiums.

Weiterführende Informationen zu den fach- bzw. studiengangsspezifischen Beratungsangeboten sind über den jeweiligen Webauftritt abrufbar.
3.3 Weitere Informations- und Beratungsangebote

Neben den Beratungsangeboten des Faches steht den Studierenden an der Universität zu Köln ein reichhaltiges Beratungsangebot zur Verfügung. Die wichtigsten Ansprechpartner sind in der folgenden Tabelle aufgelistet.

<table>
<thead>
<tr>
<th>Beratungsangebot der Universität zu Köln</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentrale Studienberatung</td>
<td>Allgemeine Fragen zum Studium, Fächerwahl etc.</td>
</tr>
<tr>
<td>https://verwaltung.uni-koeln.de/abteilung21/content/index_ger.html</td>
<td></td>
</tr>
<tr>
<td>Studierendensekretariat</td>
<td>Fragen zur Einschreibung, Rückmeldung etc.</td>
</tr>
<tr>
<td>https://verwaltung.uni-koeln.de/studsek/content/index_ger.html</td>
<td></td>
</tr>
<tr>
<td>Kölner Studierendenwerk</td>
<td>Soziale Aspekte im Zusammenhang mit dem Studium</td>
</tr>
<tr>
<td>https://www.kstw.de/</td>
<td></td>
</tr>
<tr>
<td>ASTA</td>
<td>Studierendenvertretung</td>
</tr>
<tr>
<td>http://www.astan-uni-koeln.de/</td>
<td></td>
</tr>
<tr>
<td>Servicezentrum Inklusion</td>
<td>Studieren mit Behinderung, chronischer und psychischer Erkrankung</td>
</tr>
<tr>
<td>https://inklusion.uni-koeln.de/</td>
<td></td>
</tr>
<tr>
<td>International Office</td>
<td>Ausländische Studierende und Vorbereitung auf ein Auslandsstudium</td>
</tr>
<tr>
<td>https://portal.uni-koeln.de/international</td>
<td></td>
</tr>
<tr>
<td>Zentrum für internationale Beziehungen (UiB) der Math.-Naturw. Fakultät</td>
<td>Vereinbarkeit von Familie und Studium, Sexualisierte Diskriminierung</td>
</tr>
<tr>
<td>https://mathnat.uni-koeln.de/international</td>
<td></td>
</tr>
<tr>
<td>Zentrale Gleichstellungsbeauftragte</td>
<td></td>
</tr>
<tr>
<td>https://gb.uni-koeln.de/</td>
<td></td>
</tr>
</tbody>
</table>
Anhang A Anwendungsfelder

A.1 Mathematik

Das Studium im Anwendungsfeld Mathematik beginnt mit den beiden Basismodulen **Mathematik I** (MSc-I-Mathe1) und **Mathematik II** (MSc-I-Mathe2), an die sich das Aufbaumodul **Seminar Mathematik** (MSc-I-SMathe) anschließt.

LP-Übersicht Nebenfach Mathematik

<table>
<thead>
<tr>
<th>Sem</th>
<th>Modul</th>
<th>K</th>
<th>VN</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basismodul Mathematik I MSc-I-Mathe 1</td>
<td>84 h</td>
<td>186 h</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Basismodul Informatik II MSc-I-Mathe2</td>
<td>84 h</td>
<td>186 h</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Aufbaumodul Seminar Mathematik MSc-I-SMathe</td>
<td>28 h</td>
<td>140 h</td>
<td>6</td>
</tr>
</tbody>
</table>

Die beiden Basismodule müssen durch jeweils eine Veranstaltung aus dem Vorlesungskatalog Mathematik abgedeckt werden.

Vorlesungskatalog Mathematik

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Vorlesungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angewandte Analysis</td>
<td>Funktionalanalysis, Variationsrechnung, Ausgewählte Kapitel der Angewandten Analysis</td>
</tr>
<tr>
<td>Diskrete Mathematik und mathematische Optimierung</td>
<td>Konvexe und diskrete Geometrie, Methoden und Probleme der diskreten Mathematik</td>
</tr>
<tr>
<td>Stochastik und Versicherungsmathematik</td>
<td>Wahrscheinlichkeitstheorie II, Stochastische Finanzmathematik, Risikotheorie, Ausgewählte Kapitel der Stochastik, Ausgewählte Kapitel der Statistischen Mechanik</td>
</tr>
<tr>
<td>Algebra und Zahlentheorie</td>
<td>Geometrische Darstellungstheorie, Strukturen und Darstellungen von Algebren, Elliptische Funktionen, Modulformen, Aktuelle Themen der Algebra und Zahlentheorie</td>
</tr>
<tr>
<td>Geometrie und Topologie</td>
<td>Differentialgeometrie, Komplexe Geometrie, Riemannsche Flächen, Spezielle Kapitel der Differentialgeometrie, Topologie, Algebraische Topologie, Differentialtopologie, Geometrische Topologie, Ausgewählte Kapitel der Topologie</td>
</tr>
<tr>
<td>Analysis</td>
<td>Funktionalanalysis, Analysis auf Mannigfaltigkeiten, Komplexe Geometrie, Riemannsche Flächen, Differentialtopologie</td>
</tr>
</tbody>
</table>

Es folgen die Modulbeschreibungen und Modultabellen im Anwendungsfeld Mathematik sortiert nach den Bereichen.
Bereich **Angewandte Analysis**:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Funktionalanalysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-FA</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-M-FA</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1.-3. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung

2 Kontaktzeit
 60 h
 30 h

Selbststudium
 120 h
 60 h

gesteplte Gruppengröße
 30 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen
Kenntnisse der grundlegenden Konzepte und Methoden in Funktionalanalysis und Fähigkeiten bei der Anwendung unterschiedlicher Lösungsmethoden. Grundlagen für weiterführende Vorlesungen in Analysis.

3 Inhalte des Moduls
 - Metrische Räume, Banach- und Hilberträume
 - Operatoren und Funktionale
 - Fredholmsche Alternative, Dualräume
 - Spektralsatz für kompakte Operatoren
 - Hahn-Banach Sätze
 - Rieszscher Darstellungssatz, Satz von der offenen Abbildung
 - Schwache Topologien

Literatur z.B. H.Heuser oder H.W.Alt, Funktionalanalysis
Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

4 Lehr- und Lernformen
Vorlesung mit Übungen

5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
Inhaltlich: Stoff der Vorlesungen Analysis I, II und III, Lineare Algebra I, II

6 Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. Dr. M. Kunze, Prof. Dr. G. Marinescu, Prof. Dr. G. Sweers

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Variationsrechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-VR</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-M-VR</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemester ab dem 1. Semester</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
a) Vorlesung
b) Übung

2 Ziele des Moduls und zu erwerbende Kompetenzen

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>120 h</td>
<td>30 Studierende</td>
</tr>
<tr>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
</tbody>
</table>

3 Inhalte des Moduls
- Fundamentalslemma der Variationsrechnung
- Hinreichende und Notwendige Kriterien für Existenz
- Konvexe Optimierungsaufgaben
- Nichtkonvexe Variationsaufgaben
- Regularität von Minimierern

Literatur z.B. B. Dacorogna, *Introduction to calculus of variations*

Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

4 Lehr- und Lernformen
Vorlesung mit Übungen

5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master

Inhaltlich: Funktionalanalysis oder Einführung in Partielle Differentialgleichungen

6 Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. Dr. M. Kunze, Prof. Dr. G. Sweers

11 Sonstige Informationen
Titel des Moduls
Ausgewählte Kapitel der Angewandten Analysis

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul</td>
<td>BM-AKAngA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs- punkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-M-KAA</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem 1. Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1. **Lehrveranstaltungen**
 - a) Vorlesung
 - b) Übung

2. **Kontaktzeit**
 - 60 h
 - 30 h

3. **Selbststudium**
 - 120 h
 - 60 h

geplante Gruppengröße: 30 Studierende

<table>
<thead>
<tr>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden haben ein vertieftes Methodenspektrum und Spezialkenntnisse erworben, die auf eine Masterarbeit und auch auf eine Promotion vorbereiten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte des Moduls</th>
</tr>
</thead>
</table>

Zu Themen und weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

<table>
<thead>
<tr>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung mit Übungen</td>
</tr>
</tbody>
</table>

5. **Modulvoraussetzungen**

 Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master

6. **Form der Modulprüfung/Modulabschlussprüfung**
Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. Dr. M. Kunze

11 Sonstige Informationen

Bereich Diskrete Mathematik und Mathematische Optimierung:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Konvexe und diskrete Geometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-KDG</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-M-KDG</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem 1. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td>a) Vorlesung</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>60 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>120 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
<td>30 Studierende</td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen
In der konvexen und diskreten Geometrie werden Eigenschaften, wie Inhalt, Oberfläche und Isoperimetrie, von n-dimensionalen konvexen Objekten studiert. Im drei-dimensionalen Anschauungsraum sind diese intuitiv recht einfach
zu verstehen. Dagegen gibt es im n-dimensionalen Raum einige Überraschungen, die oft sehr positive bzw. sehr negative Konsequenzen für die Existenz von effizienten Algorithmen haben.

Ziel des Moduls ist der Aufbau von n-dimensionaler Intuition und das Verstehen der algorithmischen Konsequenzen. Nach erfolgreicher Teilnahme werden Studierende in der Lage sein,
- die grundlegenden Konzepte der konvexen und diskreten Geometrie zu erklären
- Beispiele von algorithmischen Anwendungen der konvexen und diskreten Geometrie anzugeben
- Probleme, die in den Bereich der konvexen und diskreten Geometrie fallen, zu erkennen
- die erlernte n-dimensionale Intuition in neuen Kontexten anzuwenden, um Probleme zu lösen

3 Inhalte des Moduls

1. Kombinatorik von konvexen Polytopen: Das abc von f, g und h, Dehn-Sommerville Gleichungen, Schälbarkeit, Zyklische Polytope, Das Theorem von McMullen, Effizienz des Simplexalgorithmus
2. Inhalt, Oberfläche und Isoperimetrie: Brunn-Minkowski Theorie, Isoperimetrie, Theorem von Dvoretzky, Phänomen der Volumenkonzentration, Volumenberechnung

Literatur: z.B.
- G.M. Ziegler - Lectures on polytopes
- J. Matousek - Lectures on discrete geometry
- P.M. Gruber - Discrete and convex geometry

Weitere Literatur wird in der Vorlesung bekannt gegeben.

4 Lehr- und Lernformen

Vorlesung mit Übungen

5 Modulvoraussetzungen

Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master

Inhaltlich: Einführung in die Mathematik des Operations Research

6 Form der Modulprüfung/Modulabschlussprüfung

Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

Das Modul ist bestanden und die Leistungspunkte werden zuerkannt, wenn die 120-180 - minütige Abschlussklausur bestanden oder die 30-45 - minütige mündliche Abschlussprüfung bestanden wird. Zulassungsvoraussetzung für die

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. Dr. F. Vallentin

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Methoden und Probleme der diskreten Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Kurztitel</td>
</tr>
<tr>
<td>Basismodul</td>
<td>BM-MPDM</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>Work-load</td>
</tr>
<tr>
<td>MSc-M-MPdM</td>
<td>270 h</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>a) Vorlesung</td>
<td>60 h</td>
</tr>
<tr>
<td>b) Übung</td>
<td>30 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
<td>30 Studierende</td>
</tr>
<tr>
<td>2 Ziele des Moduls und zu erwerbende Kompetenzen</td>
<td></td>
</tr>
<tr>
<td>- grundlegende Methoden der diskreten Mathematik aufzuzählen und anzuwenden</td>
<td></td>
</tr>
<tr>
<td>- konkrete Probleme als Probleme der diskreten Mathematik zu identifizieren und nach Schwierigkeit zu klassifizieren</td>
<td></td>
</tr>
</tbody>
</table>

84
- Methoden der diskreten Mathematik an konkreten Problemen anzuwenden und falls nötig gewinnbringend abzuwandeln

3 Inhalte des Moduls

1. Lineare Algebra: Zählen mit Determinante und Permanente
2. Algebra: polynomiale Methode, kombinatorischer Nullstellensatz
3. Analysis: Szemerédi Regularität und Anwendungen
4. Topologie: Das Borsuk-Ulam Theorem und das Färben von Graphen
5. Wahrscheinlichkeitsrechnung: Modelle für zufällige Graphen
6. Geometrie: sphärische t-Designs

Literatur: z.B.
N. Alon, J. Spencer - The probabilistic method
J. Matousek - Using the Borsuk-Ulam theorem (Lectures on topological methods in combinatorics and geometry)

4 Lehr- und Lernformen

Vorlesung mit Übungen

5 Modulvoraussetzungen

Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master

Inhaltlich: Einführung in die Mathematik des Operations Research

6 Form der Modulprüfung/Modulabschlussprüfung

Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)

Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote

9/114

10 Modulbeauftragte/r

Prof. Dr. F. Vallentin
Bereich *Stochastik und Versicherungsmathematik*:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Wahrscheinlichkeitstheorie II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-WTII</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-M-WT2</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem 1. Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Vorlesung</td>
<td>60 h</td>
<td>120 h</td>
<td>30 Studierende</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
</tbody>
</table>

2 **Ziele des Moduls und zu erwerbende Kompetenzen**

3 **Inhalte des Moduls**

1. Martingaltheorie
 - Martingale, Submartingale, Supremartingale, Semimartingale
 - Stoppzeiten, Optional Stopping (Sampling) Theorem
 - Martingalkonvergenz und deren Anwendung
 - Gleichgradig integrierbare und quadratintegrierbare Martingale
 - Doob-Meyer-Zerlegung

2. Markovketten und Verzweigungsprozesse
 - Typen von Zuständen, irreduzible Ketten, aperiodische Ketten
 - Kriterien für Rekurrenz und Transienz
 - Markovketten in stetiger Zeit

3. Stationäre Folgen
 - Ergodensätze
- Anwendungen

4. Spezielle Verteilungen
 - Unbegrenzt teilbare Verteilungen, kanonische Darstellung
 - Reguläre Variation, Karamata-Theorie
 - Stabile Verteilungen, subexponentielle Verteilungen

5. Brown'sche Bewegung (Wiener-Prozess), Gauß'sche Prozesse
 - Stoppzeiten, starke Markov- Eigenschaft, Spiegelungsprinzip
 - Invarianzprinzipien und deren Anwendungen
 - Zentrale Grenzwertsätze für abhängige Zufallsvariablen
 - Quadratische Variation und stochastische Integrale
 - Extremwerttheorie

Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung mit Übungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master</td>
<td></td>
</tr>
<tr>
<td>Inhaltlich: Stoff des Moduls Wahrscheinlichkeitstheorie I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur oder mündliche Prüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Dozent:innen des Forschungsbereichs Stochastik und Versicherungsmathematik des Departments Mathematik/Informatik</td>
<td></td>
</tr>
</tbody>
</table>

| 11 | Sonstige Informationen |
Titel des Moduls
Risikotheorie

Art des Moduls
Basismodul

Kurztitel
BM-RT

Kennnummer
MSc-M-RT

Workload
270 h

Leistungspunkte
9 LP

Studiensemester
ab dem 1. Semester

Häufigkeit des Angebots
unregelmäßig

Beginn des Angebots
SoSe/WiSe

Dauer
1 Semester

1 Lehrveranstaltungen
a) Vorlesung

Kontaktzeit
60 h

Selbststudium
120 h

geplante Gruppengröße
30 Studierende

b) Übung

30 h

60 h

2 Ziele des Moduls und zu erwerbende Kompetenzen

3 Inhalte des Moduls

Literatur z.B. J. Grandell, Aspects of risk theory
Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

4 Lehr- und Lernformen
Vorlesung mit Übungen

5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master

Inhaltlich: Stoff der Vorlesung Wahrscheinlichkeitstheorie I

6 Form der Modulprüfung/Modulabschlussprüfung
7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)

Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote

9/114

10 Modulbeauftragte/r

Prof. Dr. H. Schmidli

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Stochastische Finanzmathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-StFM</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-M-SF</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem 1. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>a) Vorlesung</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>b) Übung</td>
<td>Selbststudium</td>
</tr>
<tr>
<td></td>
<td>geplante Gruppengröße</td>
</tr>
</tbody>
</table>
| 2 Ziele des Moduls und zu erwerbende Kompetenzen | Kenntnisse der Grundlagen und Methoden der Finanzmathematik und der Zinsratenmodelle. Vorbereitung auf eine Masterarbeit.
| | In Vorlesungen und Übungen werden neben vertiefen Fachkenntnissen auch weitergehende Fähigkeiten zum Einordnen, Erkennen, Formulieren und Lös-
Die Übungen dienen neben der Vertiefung des Vorlesungsstoffs auch dem Erwerb von Kommunikationsfähigkeiten und Präsentationskompetenzen.

3 Inhalte des Moduls

- **State-Pricing** (Arbitrage, risikoneutrale Wahrscheinlichkeiten, optimaler Nutzen, Äquilibrium, Pareto-Optimalität),
- **Modelle in Diskreter Zeit** (Martingale und Arbitrage, vollständige Märkte, amerikanische Optionen),
- **Stochastischer Kalkül** (Stochastisches Integral, Itô-Formel, SDE’s),
- **Black-Scholes-Modell**,
- **Zinsratenmodelle** (Obligationen, klassische Modelle, Kreditrisiko)
- **Portfolio-Theorie**
- **Forwards und Futures.**

Literatur z.B. D. Lamberton und B. Lapeyre. *Stochastic Calculus Cplied to Finance.*
Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

4 Lehr- und Lernformen

Vorlesung mit Übungen

5 Modulvoraussetzungen

- **Formal:** Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
- **Inhaltlich:** Stoff der Vorlesung Wahrscheinlichkeitstheorie II

6 Form der Modulprüfung/Modulabschlussprüfung

Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)

Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote

9/114

10 Modulbeauftragte/r

Prof. Dr. H. Schmidli
Titel des Moduls
Ausgewählte Kapitel der Stochastik

Art des Moduls
- Basismodul

Kurztitel
BM-AKSt

Kennnummer
MSc-M-AK-Stoch

Workload
270 h

Leistungspunkte
9 LP

Studiensemester
ab dem 1. Semester

Häufigkeit des Angebots
unregelmäßig

Beginn des Angebots
SoSe/WiSe

Dauer
1 Semester

1 Lehrveranstaltungen
a) Vorlesung
b) Übung

Kontaktzeit
60 h
30 h

Selbststudium
120 h
60 h

geplante Gruppengröße
30 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen
In diesem Modul erwerben Studierende probabilistisches Verständnis für ausgewählte Modelle der Stochastik und die Fähigkeit, diese mit probabilistischen Methoden zu untersuchen.

3 Inhalte des Moduls
Weitere Themen z.B. aus: Branching Brownian motion, Prinzipien grosser Abweichungen, zufällige Graphen, zufällige Felder, Perkolation.

Zu Themen und weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

4 Lehr- und Lernformen
Vorlesung mit Übungen

5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master

Inhaltlich: Kenntnisse in Niveau und Umfang der Vorlesung Wahrscheinlichkeitstheorie I und II.
Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

Voraussetzungen für die Vergabe von Leistungspunkten

Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

Gesamtnote/Fachnote
9/114

Modulbeauftragte/r
Die Dozent:innen des Forschungsbereichs Stochastik und Versicherungsmathematik des Departments Mathematik/Informatik

Sonstige Informationen
Je nach Bedarf kann die Vorlesung in englischer oder deutscher Sprache angeboten werden.

Titel des Moduls
Ausgewählte Kapitel der Statistischen Mechanik

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Basismodul</td>
<td>MSc-M-AKStM</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem 1. Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td>60 h</td>
<td>120 h</td>
<td>30 Studierende</td>
<td>30 Studierende</td>
</tr>
<tr>
<td>b) Übung</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In diesem Modul erwerben Studierende probabilistisches Verständnis für ausgewählte Modelle der statistischen Mechanik und die Fähigkeit, Modelle der statistischen Mechanik mit probabilistischen Methoden zu untersuchen.

3 Inhalte des Moduls
Ausgewählte Modelle der statistischen Mechanik, zum Beispiel Curie-Weiss-, Ising-, Potts Modell, freies Gaußsches Feld; wahrscheinlichkeitstheoretische Methoden, zum Beispiel: Markovketten, Extremwertanalyse, große Abweichungen.

4 Lehr- und Lernformen
Vorlesung mit Übungen

5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
Inhaltlich: Kenntnisse in Niveau und Umfang der Vorlesung Wahrscheinlichkeitstheorie I.

6 Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Die Dozent:innen des Forschungsbereichs Stochastik und Versicherungsmathematik des Departments Mathematik/Informatik

11 Sonstige Informationen
Je nach Bedarf kann die Vorlesung in Englischer oder Deutscher Sprache angeboten werden.
<table>
<thead>
<tr>
<th>Bereich Algebra Zahlentheorie:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titel des Moduls</td>
</tr>
<tr>
<td>Geometrische Darstellungstheorie</td>
</tr>
<tr>
<td>Art des Moduls</td>
</tr>
<tr>
<td>o Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
</tr>
<tr>
<td>BM-GDT</td>
</tr>
<tr>
<td>Kennnummer</td>
</tr>
<tr>
<td>MSc-M-GDT</td>
</tr>
<tr>
<td>Workload</td>
</tr>
<tr>
<td>270 h</td>
</tr>
<tr>
<td>Leistungs punkte</td>
</tr>
<tr>
<td>9 LP</td>
</tr>
<tr>
<td>Studien semester</td>
</tr>
<tr>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
</tr>
<tr>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
</tr>
<tr>
<td>SoSe/WiS e</td>
</tr>
<tr>
<td>Dauer</td>
</tr>
<tr>
<td>ein Semester</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>a) Vorlesung</td>
</tr>
<tr>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>60 h</td>
</tr>
<tr>
<td>b) Übung</td>
</tr>
<tr>
<td>30 h</td>
</tr>
<tr>
<td>Selbststudium</td>
</tr>
<tr>
<td>120 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
</tr>
<tr>
<td>30 Studierende</td>
</tr>
<tr>
<td>Ziele des Moduls und zu erwerbende Kompetenzen</td>
</tr>
<tr>
<td>Kenntnisse der grundlegenden Konzepte und Methoden der geometrischen Darstellungstheorie und Einführung in aktuelle Forschungsgegenstände. Die Studierenden sollen in die Lage versetzt werden, Originalliteratur lesen und eine Masterarbeit in diesem Gebiet anfertigen zu können.</td>
</tr>
<tr>
<td>Inhalte des Moduls</td>
</tr>
<tr>
<td>Einführung: einfache Beispiele, Ausblick auf Anwendungen</td>
</tr>
<tr>
<td>Homologische und kohomologische Konstruktionen, Kategorifizierung</td>
</tr>
<tr>
<td>Vertiefung in einem aktuellen Forschungsgebiet</td>
</tr>
<tr>
<td>Diskussion von Anwendungen</td>
</tr>
<tr>
<td>Literatur z.B. W.Fulton, Young tableaux</td>
</tr>
<tr>
<td>Zu Themen und weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.</td>
</tr>
<tr>
<td>Lehr- und Lernformen</td>
</tr>
<tr>
<td>Vorlesung mit Übungen</td>
</tr>
<tr>
<td>Modulvoraussetzungen</td>
</tr>
<tr>
<td>Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master</td>
</tr>
</tbody>
</table>
6 Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das Modul ist bestanden und die Leistungspunkte werden zuerkannt, wenn die
120-180-minütige Abschlussklausur bestanden oder die 30-45-minütige
mündliche Abschlussprüfung bestanden wird. Zulassungsvoraussetzung für die
Prüfung ist die regelmäßige erfolgreiche Bearbeitung der Übungsaufgaben. Die
genauen Anforderungen gibt der/die jeweilige Dozent/-in zu Beginn der Veranstal-
tung bekannt. Zur Teilnahme an der Abschlussprüfung ist eine Anmeldung
erforderlich; es wird zeitnah eine Wiederholungsprüfung angeboten. Eine wie-
derholte Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf
eine Wiederholung der Abschlussprüfung ist möglich. Das Modul wird benotet.

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschafts-
mathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. Dr. P. Littelmann

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Strukturen und Darstellungen von Algebren</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Basismodul</td>
<td>BM-SDA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-M-SDA</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem ersten Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
</tr>
<tr>
<td>b) Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>120 h</td>
<td>30 Studierende</td>
</tr>
</tbody>
</table>

| 2 Ziele des Moduls und zu erwerbende Kompetenzen |
Kenntnisse der grundlegenden Konzepte und Methoden der Darstellungs- und Strukturtheorie von Algebren und Einführung in aktuelle Forschungsgegenstände. Die Studierenden sollen in die Lage versetzt werden, Originalarbeiten in diesem Gebiet lesen und eine Masterarbeit anfertigen zu können.

3 Inhalte des Moduls
- Einführung: Beispiele von Algebren, Fragestellung, Ausblick auf Anwendungen
- Strukturen von Algebren (halbeinfache Situationen, Morita-Äquivalenz, Radikale) und Beispiele (Köcher und Relationen, Algebren aus Anwendungsgebieten wie Lietheorie oder mathematischer Physik)
- Darstellungen von Algebren (projektiv, injektiv, Konstruktionen von Darstellungen, Invarianten)
- Auswahl fortgeschrittener Methoden (aus den Bereichen Homologische Algebra, Auslander-Reiten-Theorie, Höchstgewichtskategorien, nichtkommutative Geometrie) mit Vertiefung in einem aktuellen Forschungsgebiet
- Diskussion von Anwendungen

Literatur z.B. T.Y.Lam, Lectures on modules and rings
M.Auslander, I.Reiten and S.Smalo, Representation theory of artin algebras
J.Mac Connell and J.C.Robson, Noncommutative noetherian rings
Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

4 Lehr- und Lernformen
Vorlesung mit Übungen

5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
Inhaltlich: Stoff der Grundvorlesungen in Analysis und in Linearer Algebra sowie der Vorlesungen Algebra und Darstellungstheorie

6 Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten
erforderlich; es wird zeitnah eine Wiederholungsprüfung angeboten. Eine wiederholte Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Abschlussprüfung ist möglich. Das Modul wird benotet.

| 8 | Verwendung des Moduls (in anderen Studiengängen) |
| | Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik. |

| 9 | Gesamtnote/Fachnote |
| | 9/114 |

| 10 | Modulbeauftragte/r |
| | Prof. Dr. P. Littelmann |

| 11 | Sonstige Informationen |

Titel des Moduls

Elliptische Funktionen

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Basismodul</td>
<td>MSc-M-EF</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem ersten Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>

1	Lehrveranstaltungen		
	a) Vorlesung		
	b) Übung		
	Kontaktzeit	Selbststudium	geplante Gruppengröße
	60 h	120 h	30 Studierende
	30 h	60 h	

| 2 | Ziele des Moduls und zu erwerbende Kompetenzen |
| | Die Studierenden sollen eine Einführung in die Theorie der elliptischen Funktionen erhalten, um nach Beendigung des Moduls unmittelbar mit einer Abschlussarbeit beginnen zu können. |

| 3 | Inhalte des Moduls |

Für diese Vorlesung wird der Besuch der Vorlesungen Algebra und Funktionentheorie vorausgesetzt.

Literatur:

Lehr- und Lernformen
Vorlesung mit Übungen

Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
Inhaltlich: der Besuch der Vorlesungen Algebra und Funktionentheorie

Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

Voraussetzungen für die Vergabe von Leistungspunkten

Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

Gesamtnote/Fachnote
9/114

Modulbeauftragte/r
Prof. Dr. K. Bringmann, Prof. Dr. S. Zwegers

Sonstige Informationen
Titel des Moduls
Modulformen

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Basismodul</td>
<td>BM-Modulformen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-M-MF</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem ersten Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiS e</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>

1 **Lehrveranstaltungen**
 a) Vorlesung
 b) Übung

2 **Kontaktzeit**
 60 h
 30 h

3 **Selbststudium**
 120 h
 60 h

4 **geplante Gruppengröße**
 30 Studierende

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziele des Moduls und zu erwerbende Kompetenzen</td>
<td>Inhalte des Moduls</td>
<td>Literatur</td>
<td>Lehr- und Lernformen</td>
</tr>
</tbody>
</table>

99
<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master</td>
<td></td>
</tr>
<tr>
<td>Inhaltlich: Gute Kenntnisse in Algebra, Funktionentheorie und Zahlentheorie.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur oder mündliche Prüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. K. Bringmann, Prof. Dr. S. Zwegers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Aktuelle Themen der Algebra und Zahlentheorie</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Basismodul</td>
<td>BM-ATAZT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-Punkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-M-TAZ</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem ersten Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>
1 Lehrveranstaltungen
 a) Vorlesung
 b) Übung

 Kontaktzeit
 60 h 30 h

 Selbststudium
 120 h 60 h

 geplante
 Gruppen-
 Größe
 30 Studie-
 rende

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden sollen einen ausreichenden Einblick in aktuelle Forschungs-
themes der algebraischen Geometrie und/oder Zahlentheorie erhalten um
nach Beendigung des Moduls unmittelbar mit einer Abschlussarbeit beginnen
zu können.
In Vorlesungen und Übungen werden neben vertieften Fachkenntnissen auch
weitergehende Fähigkeiten zum Einordnen, Erkennen, Formulieren und Lösen
von Problemen vermittelt und konzeptionelles, analytisches und logisches Den-
ken wird trainiert. Die Übungen dienen neben der Vertiefung des Vorlesungs-
stoffs auch dem Erwerb von Kommunikationsfähigkeiten und Präsentations-
kompetenzen.

3 Inhalte des Moduls
In dieser Vorlesung werden die Studierenden in ein aktuelles Forschungs-
theme der Algebra und/oder Zahlentheorie eingeführt. Der Titel, das Thema
und die vorausgesetzten Kenntnisse werden vor Beginn des Semesters be-
kannt gegeben.
Nach einer Einordnung der Probleme in den gesamtmathematischen Kontext
werden die notwendigen Begriffe erklärt und an Beispielen erläutert. Die der-
zeit bekannten Untersuchungsmethoden werden vorgestellt und ein Überblick
über den aktuellen Wissensstand wird gegeben.
Zu Themen und Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeich-
nis.

4 Lehr- und Lernformen
Vorlesung mit Übungen

5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw.
Informatik mit Studienziel Master
Inhaltlich: je nach Thema eine der Vorlesungen aus dem Bereich Algebra und
Zahlentheorie. Die vorausgesetzten Kenntnisse werden vor Beginn des Se-
mesters bekannt gegeben.

6 Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das Modul ist bestanden und die Leistungspunkte werden zuerkannt, wenn die
120-180 - minütige Abschlussklausur bestanden oder die 30-45 - minütige
mündliche Abschlussprüfung bestanden wird. Zulassungsvoraussetzung für die
Prüfung ist die regelmäßige erfolgreiche Bearbeitung der Übungsaufgaben. Die
genauen Anforderungen gibt der/die jeweilige Dozent/-in zu Beginn der Veran-
staltung bekannt. Zur Teilnahme an der Abschlussprüfung ist eine Anmeldung
erforderlich; es wird zeitnah eine Wiederholungsprüfung angeboten. Eine wiederholte Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Abschlussprüfung ist möglich. Das Modul wird benotet.

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Die Dozent:innen des Forschungsbereichs Algebra/Zahlentheorie des Departments Mathematik/Informatik

11 Sonstige Informationen

Bereich Geometrie und Topologie:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Differentialgeometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-Diffgeo</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-M-DG</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>unregelmässig</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Vorlesung 60 h
 b) Übung 30 h

2 Kontaktzeit
 Selbststudium 120 h
 geplante Gruppengröße 30 Studierende

Ziele des Moduls und zu erwerbende Kompetenzen

In Vorlesungen und Übungen werden neben den Fachkenntnissen auch Fähigkeiten zum Einordnen, Erkennen, Formulieren und Lösen von Problemen vermittelt und konzeptionelles, analytisches und logisches Denken
wird trainiert. Die Übungen dienen neben der Vertiefung des Vorlesungs-
stoFFs auch dem Erwerb von Kommunikationsfähigkeit und Präsentations-
kompetenz.

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Differenzierbare Mannigfaltigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Mannigfaltigkeiten und differenzierbare Strukturen, Orientierung</td>
</tr>
<tr>
<td></td>
<td>- Tangentialbündel und Vektorfelder</td>
</tr>
<tr>
<td></td>
<td>- Immersionen und Einbettungen</td>
</tr>
<tr>
<td></td>
<td>- Zerlegung der Eins</td>
</tr>
<tr>
<td>2.</td>
<td>Metrische Geometrie</td>
</tr>
<tr>
<td>3.</td>
<td>Grundlagen der Riemannschen Geometrie</td>
</tr>
<tr>
<td></td>
<td>- Riemannsche Metriken und kovariante Ableitung</td>
</tr>
<tr>
<td></td>
<td>- Geodätische, Krümmungen, erste und zweite Variationsformel, Jacobifelder</td>
</tr>
<tr>
<td></td>
<td>- Geometrie von Untermannigfaltigkeiten</td>
</tr>
<tr>
<td>4.</td>
<td>Globale Riemannsche Geometrie</td>
</tr>
<tr>
<td></td>
<td>- Vollständigkeit und der Satz von Hopf-Rinow</td>
</tr>
<tr>
<td></td>
<td>- Die Sätze von Bonnet-Myers und Hadamard</td>
</tr>
<tr>
<td>5.</td>
<td>Liegruppen und homogene Räume</td>
</tr>
<tr>
<td></td>
<td>- Liegruppen und Liealgebren</td>
</tr>
<tr>
<td></td>
<td>- Homogene Räume</td>
</tr>
<tr>
<td></td>
<td>- Symmetrische Räume</td>
</tr>
</tbody>
</table>

Literatur z.B. M. do Carmo; Riemannian Geometry
S. Gallot, D. Hulin, J. Lafontaine; Riemannian Geometry
D. Burago, Y. Burago, S. Ivanov; A Course in Metric Geometry
Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master</td>
</tr>
<tr>
<td></td>
<td>Inhaltlich: Stoff der Vorlesungen Analysis I, II und III sowie Lineare Algebra I und II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur oder mündliche Prüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das Modul ist bestanden und die Leistungspunkte werden zuerkannt, wenn die 120-180 - minütige Abschlussklausur bestanden oder die 30-45 - minütige mündliche Abschlussprüfung bestanden wird. Zulassungsvoraussetzung für die</td>
</tr>
</tbody>
</table>

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Die Dozent:innen des Forschungsbereichs Geometrie und Topologie des Departments Mathematik/Informatik

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Komplexe Geometrie</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Basismodul</td>
<td>BM-KompGeo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-M-KG</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem ersten Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td>60 h</td>
<td>120 h</td>
<td>30 Studierende</td>
</tr>
<tr>
<td>b) Übung</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verständnis der grundlegenden Konzepte und Methoden der mengentheoretischen und der algebraischen Topologie und Fähigkeit, topologische Begriffe und Methoden auf geometrische Fragestellungen anzuwenden. Die Studierenden werden auf Bachelorarbeiten und weiterführende Module in Topologie vorbereitet.</td>
</tr>
<tr>
<td>In Vorlesungen und Übungen werden neben den Fachkenntnissen auch Fähigkeiten zum Einordnen, Erkennen, Formulieren und Lösen von Problemen vermittelt und konzeptionelles, analytisches und logisches Denken wird trainiert.</td>
</tr>
</tbody>
</table>

Inhalte des Moduls

1. Überlagerungen und Quotientenräume
 - Überlagerungen und Homotopieanhebungseigenschaft
 - Die Quotiententopologie
 - Topologische Gruppen, Orbiträume, Homogene Räume
2. Homotopie und Fundamentalgruppe
 - Homotopie und Homotopieäquivalenz
 - Die Fundamentalgruppe
 - Anwendungen (z.B. Brouwerscher Fixpunktsatz)
3. Simpliziale Komplexe
 - Simpliziale Abbildungen
 - Baryzentrische Unterteilung
4. Simpliziale Homologie
 - Definition der Homologiegruppen
 - Homotopieinvarianz der Homologiegruppen
 - Ausgewählte Anwendungen
5. Ausbau der Theorie und weitere Anwendungen
 - z.B. Homologie mit Koeffizienten, Kohomologie, Dualität

Literatur z.B. K. Jänich, Topologie
W. Schubert, Topologie
Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

Lehr- und Lernformen

Vorlesung mit Übungen

Modulvoraussetzungen

Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
Inhaltlich: Stoff der Vorlesungen Analysis I und II sowie Lineare Algebra I und II

Form der Modulprüfung/Modulabschlussprüfung

Klausur oder mündliche Prüfung

Voraussetzungen für die Vergabe von Leistungspunkten

erforderlich; es wird zeitnah eine Wiederholungsprüfung angeboten. Eine wiederholte Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Abschlussprüfung ist möglich. Das Modul wird benotet.

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. Dr. Marinescu

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Riemannsche Flächen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>o Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-RiemF</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-M-RF</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>ein Semester</td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td>a) Vorlesung</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>60 h 30 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>120 h 60 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
<td>30 Studierende</td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen

In Vorlesungen und Übungen werden neben vertieften Fachkenntnissen auch weitergehende Fähigkeiten zum Einordnen, Erkennen, Formulieren und Lösen von Problemen vermittelt und konzeptionelles, analytisches und logisches Den-
ken wird trainiert. Die Übungen dienen neben der Vertiefung des Vorlesungs-
stoffs auch dem Erwerb von Kommunikationsfähigkeiten und Präsentations-
kompetenzen.

3 **Inhalte des Moduls**

1. Riemannsche Flächen und ihre Abbildungen
2. Eine algebraische Kurven
3. Topologische Klassifikation der kompakten Flächen, Euler-Charakteris-
tik
4. Fundamentalgruppe und Überlagerungen
5. Verzweigte Überlagerungen, Riemann-Hurwitz-Formel, Pluecker-For-

tem
6. Existenzsatz nicht-konstanter meromorpher Funktionen
7. Satz von Riemann-Roch
8. Harmonische Funktionen
9. Uniformisierungssatz

Elliptische Funktionen, Modulformen

4 **Lehr- und Lernformen**

Vorlesung mit Übungen

5 **Modulvoraussetzungen**

Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw.
Informatik mit Studienziel Master

Inhaltlich: Solide Kenntnisse in Analysis und Funktionentheorie.

6 **Form der Modulprüfung/Modulabschlussprüfung**

Klausur oder mündliche Prüfung

7 **Voraussetzungen für die Vergabe von Leistungspunkten**

Das Modul ist bestanden und die Leistungspunkte werden zuerkannt, wenn die
120-180 - minütige Abschlussklausur bestanden oder die 30-45 - minütige
mündliche Abschlussprüfung bestanden wird. Zulassungsvoraussetzung für die
Prüfung ist die regelmäßige erfolgreiche Bearbeitung der Übungsaufgaben. Die
genauen Anforderungen gibt der/die jeweilige Dozent/-in zu Beginn der Veran-
staltung bekannt. Zur Teilnahme an der Abschlussprüfung ist eine Anmeldung
erforderlich; es wird zeitnah eine Wiederholungsprüfung angeboten. Eine wie-
derholte Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf
eine Wiederholung der Abschlussprüfung ist möglich. Das Modul wird benotet.

8 **Verwendung des Moduls (in anderen Studiengängen)**

Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschafts-
mathematik und Informatik.

9 **Gesamtnote/Fachnote**

9/114

10 **Modulbeauftragte/r**

Prof. Dr. Marinescu

11 **Sonstige Informationen**
<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Spezielle Kapitel der Differentialgeometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Kurztitel BM-SKDiffgeo</td>
</tr>
<tr>
<td>o Basismodul</td>
<td>270 h Leistungspunkte 9 LP</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>Studiensemester ab dem ersten Semester</td>
</tr>
<tr>
<td>MSc-M-KDfG</td>
<td>Häufigkeit des Angebots unregelmäßig</td>
</tr>
<tr>
<td></td>
<td>Beginn des Angebots SoSe/WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>ein Semester</td>
</tr>
<tr>
<td>1</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td></td>
<td>a) Vorlesung</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>60 h 30 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>120 h 60 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
<td>30 Studierende</td>
</tr>
<tr>
<td>2</td>
<td>Ziele des Moduls und zu erwerbende Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Einführung in die aktuelle Forschung der Differentialgeometrie, Vorbereitung auf eine Masterarbeit in Differentialgeometrie.</td>
</tr>
<tr>
<td>3</td>
<td>Inhalte des Moduls</td>
</tr>
<tr>
<td></td>
<td>Eine Auswahl folgender Themen:</td>
</tr>
<tr>
<td></td>
<td>- Holonomietheorie</td>
</tr>
<tr>
<td></td>
<td>- Spingeometrie, Dirac-Operatoren, Indexsätze</td>
</tr>
<tr>
<td></td>
<td>- Kählergeometrie</td>
</tr>
<tr>
<td></td>
<td>- Strukturtheorie halbeinfacher Liescher Gruppen und symmetrischer Räume</td>
</tr>
<tr>
<td></td>
<td>- Theorie der Orbifolds</td>
</tr>
<tr>
<td></td>
<td>- Einstein Metriken</td>
</tr>
<tr>
<td></td>
<td>- Charakteristische Klassen (Chern-Weil-Theorie)</td>
</tr>
<tr>
<td></td>
<td>Zu Themen und weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.</td>
</tr>
<tr>
<td>4</td>
<td>Lehr- und Lernformen</td>
</tr>
<tr>
<td></td>
<td>Vorlesung mit Übungen</td>
</tr>
<tr>
<td>5</td>
<td>Modulvoraussetzungen</td>
</tr>
<tr>
<td></td>
<td>Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master</td>
</tr>
</tbody>
</table>
Inhaltlich: Grundlegende Kenntnisse in Differentialgeometrie.

6 Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Die Dozent:innen des Forschungsbereichs Geometrie und Topologie des Departments Mathematik/Informatik

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Topologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>o Basismodul</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-M-TOP</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td>a) Vorlesung</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 **Ziele des Moduls und zu erwerbende Kompetenzen**

3 **Inhalte des Moduls**

1. Überlagerungen und Quotientenräume
 - Überlagerungen und Homotopieanhebungseigenschaft
 - Die Quotiententopologie
 - Topologische Gruppen, Orbiträume, Homogene Räume
2. Homotopie und Fundamentalgruppe
 - Homotopie und Homotopieäquivalenz
 - Die Fundamentalgruppe
 - Anwendungen (z.B. Brouwerscher Fixpunktsatz)
3. Simpliciale Komplexe
 - Simpliciale Abbildungen
 - Baryzentrische Unterteilung
4. Simpliciale Homologietheorie
 - Definition der Homologiegruppen
 - Homotopieinvarianz der Homotopiegruppen
 - Ausgewählte Anwendungen
5. Ausbau der Theorie und weitere Anwendungen
 - z.B. Homologie mit Koeffizienten, Kohomologietheorie, Dualität

Literatur z.B. K. Jänich, Topologie
W. Schubert, Topologie
Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

4 **Lehr- und Lernformen**

Vorlesung mit Übungen

5 **Modulvoraussetzungen**

Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master

Inhaltlich: Stoff der Vorlesungen Analysis I und II sowie Lineare Algebra I und II

6 **Form der Modulprüfung/Modulabschlussprüfung**

Klausur oder mündliche Prüfung

7 **Voraussetzungen für die Vergabe von Leistungspunkten**

Das Modul ist bestanden und die Leistungspunkte werden zuerkannt, wenn die 120-180 - minütige Abschlussklausur bestanden oder die 30-45 - minütige mündliche Abschlussprüfung bestanden wird. Zulassungsvoraussetzung für die Prüfung ist die regelmäßige erfolgreiche Bearbeitung der Übungsaufgaben. Die genauen Anforderungen gibt der/die jeweilige Dozent/-in zu Beginn der Veranstaltung bekannt. Zur Teilnahme an der Abschlussprüfung ist eine Anmeldung
erforderlich; es wird zeitnah eine Wiederholungsprüfung angeboten. Eine wiederholte Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Abschlussprüfung ist möglich. Das Modul wird benotet.

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Die Dozent:innen des Forschungsbereichs Geometrie und Topologie des Departments Mathematik/Informatik

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebraische Topologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Basismodul</td>
<td>BM-AlgTop</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-M-AT</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem ersten Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>b) Übung</td>
<td>60 h</td>
</tr>
<tr>
<td></td>
<td>30 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse der grundlegenden Konzepte und Methoden der Algebraischen Topologie; die Studierenden sind in der Lage, aktuelle Fragestellungen der Topologie zu verstehen. Vorbereitung auf eine Masterarbeit.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Singuläre Homologietheorie</td>
<td></td>
</tr>
<tr>
<td>- Berechnung von Homologiegruppen</td>
<td></td>
</tr>
</tbody>
</table>
1. CW-Komplexe
2. Homologie mit Koeffizienten
3. Geometrische Anwendungen

2. Kohomologietheorie
- singuläre Theorie vs. de Rham Kohomologie
- Produkte und Dualität

3. Ausgewählte Kapitel
- z.B. Klassifikation von Mannigfaltigkeiten, Homotopietheorie

Literatur z.B. A. Hatcher, Algebraic topology
W. Massey, Algebraic topology
Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

4. Lehr- und Lernformen
Vorlesung mit Übungen

5. Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
Inhaltlich: Grundlegende Kenntnisse in Geometrie und Topologie, etwa im Umfang der Vorlesung 'Topologie' aus dem Bachelorprogramm.

6. Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

7. Voraussetzungen für die Vergabe von Leistungspunkten

8. Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9. Gesamtnote/Fachnote
9/114

10. Modulbeauftragte/r
Prof. H Geiges, Ph.D. (Cantab)

11. Sonstige Informationen
<table>
<thead>
<tr>
<th>Titel des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differentialtopologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Basismodul</td>
<td>BM-DiffTopol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs punkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-M-DfT</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem ersten Semester</td>
<td>unregelmässig</td>
<td>SoSe/WiSe</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppen größe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Vorlesung</td>
<td>60 h</td>
<td>120 h</td>
<td>30 Studierende</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Differenzierbare Mannigfaltigkeiten und Abbildungen</td>
</tr>
<tr>
<td></td>
<td>2. Vektorbündel und allgemeinere Faserbündel</td>
</tr>
<tr>
<td></td>
<td>3. Differentialgleichungen auf Mannigfaltigen</td>
</tr>
<tr>
<td></td>
<td>4. Isotopien und Isotopieerweiterung</td>
</tr>
<tr>
<td></td>
<td>5. Konstruktion von Mannigfaltigkeiten, exotische Sphären</td>
</tr>
<tr>
<td></td>
<td>Literatur z.B. Th.Bröcker und K.Jänich, Einführung in die Differentialtopologie</td>
</tr>
<tr>
<td></td>
<td>Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung mit Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master</td>
</tr>
<tr>
<td></td>
<td>Inhaltlich: Grundlegende Kenntnisse in Geometrie und Topologie, etwa im Umfang der Vorlesung `Differenzierbare Mannigfaltigkeiten' aus dem Bachelorprogramm.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur oder mündliche Prüfung</td>
</tr>
</tbody>
</table>

| 113 |
7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. H. Geiges, Ph.D. (Cantab)

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Geometrische Topologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>o Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-GeoTopol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>MSc-M-GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Lehrveranstaltungen</th>
<th>a) Vorlesung b) Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontaktzeit</td>
<td>60 h 30 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>120 h 60 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
<td>30 Studierende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse der grundlegenden Konzepte und Methoden der Geometrischen Topologie; die Studierenden sind in der Lage, aktuelle Fragestellungen der Topologie zu verstehen. Vorbereitung auf eine Masterarbeit. In Vorlesungen und Übungen werden neben vertieften Fachkenntnissen auch weitergehende Fähigkeiten zum Einordnen, Erkennen, Formulieren und Lösen</td>
</tr>
</tbody>
</table>

3 Inhalte des Moduls
1. Knoten und Verschlingungen
 - Knotenpolynome
 - Zöpfe und Zopfgruppen
2. 3-Mannigfaltigkeiten
 - Top-PL-Diff
 - Heegaard-Zerlegung
 - Homöomorphismen von Flächen
 - Der Satz von Lickorish und Wallace
3. Verzweigte Überlagerungen
 - Riemann-Hurwitz-Formel
 - Der Satz von Hilden und Montesinos
4. Dehn-Chirurgie von 3-Mannigfaltigkeiten
 - Chirurgie-Koeffizient
 - Verschlingungszahlen und ganzzahlige Chirurgie
 - Modifikation von Chirurgie-Beschreibungen
 - Linsenräume und Kettenbrüche
5. Die Poincaré-Sphäre
 - Heegard-Zerlegung, Klempnerei, verzweigte Überlagerung, Seifert-Mannigfaltigkeiten

Literatur z.B. G.Burde und H.Zieschang, Knots
Zu weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

4 Lehr- und Lernformen
Vorlesung mit Übungen

5 Modulkriterien
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
Inhaltlich: Grundlegende Kenntnisse in Geometrie und Topologie (keine Algebraische Topologie)
aus einer Geometrie- oder Topologievorlesung aus dem Bachelorprogramm.

6 Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das Modul ist bestanden und die Leistungspunkte werden zuerkannt, wenn die 120-180 - minütige Abschlussklausur bestanden oder die 30-45 - minütige mündliche Abschlussprüfung bestanden wird. Zulassungsvoraussetzung für die Prüfung ist die regelmäßige erfolgreiche Bearbeitung der Übungsaufgaben. Die genauen Anforderungen gibt der/die jeweilige Dozent/-in zu Beginn der Veranstaltung bekannt. Zur Teilnahme an der Abschlussprüfung ist eine Anmeldung
erforderlich; es wird zeitnah eine Wiederholungsprüfung angeboten. Eine wiederholte Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Abschlussprüfung ist möglich. Das Modul wird benotet.

8 **Verwendung des Moduls (in anderen Studiengängen)**
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 **Gesamtnote/Fachnote**
9/114

10 **Modulbeauftragte/r**
Prof. H. Geiges, Ph.D (Cantab)

11 **Sonstige Informationen**

Titel des Moduls
Ausgewählte Kapitel der Topologie

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Basismodul</td>
<td>BM-AKTopol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs- punkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc-M-KT</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem ersten Semester</td>
<td>unregelmäßig</td>
<td>SoSe/WiSe</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppen-größe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Vorlesung</td>
<td>60 h</td>
<td>120 h</td>
<td>30 Studierende</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden haben ein vertieftes Methodenspektrum und Spezialkenntnisse erworben, die auf eine Masterarbeit und auch auf eine Promotion vorbereiten.</td>
</tr>
</tbody>
</table>

| 3 | Inhalte des Moduls |
Weitere Themen aus: Differentialtopologie (z.B. Chirurgietheorie), Geometrische Topologie (z.B. 4-Mannigfaltigkeiten und Kirby Calculus), Kontakttopologie, Symplektische Topologie
Zu Themen und weiterer Literatur vgl. das aktuelle Kommentierte Vorlesungsverzeichnis.

4 Lehr- und Lernformen
Vorlesung mit Übungen

5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
Inhaltlich: Solide Kenntnisse in Geometrie und Topologie, in der Regel im Umfang von mindestens ein bis zwei der Vorlesungen 'Algebraische Topologie', 'Geometrische Topologie' oder 'Differentialtopologie'.

6 Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

7 Voraussetzungen für die Vergabe von Leistungspunkten

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 Gesamtnote/Fachnote
9/114

10 Modulbeauftragte/r
Prof. H. Geiges, Ph.D. (Cantab)

11 Sonstige Informationen

Bereich Analysis:
Die Modulbeschreibungen zu den Veranstaltungen Komplexe Geometrie, Riemannsche Flächen und Differentialtopologie sind dem Bereich Geometrie und Topologie zu entnehmen (s.o.). Die Modulbeschreibung zur Veranstaltung Funktionalanalysis ist dem Bereich Angewandte Analysis zu entnehmen (s.o.).
Titel des Moduls
Analysis auf Mannigfaltigkeiten

Art des Moduls
- Basismodul

Kurztitel
BM-AnaMannigf

Kennnummer
MSc-M-AaM

Workload
270 h

Leistungspunkte
9 LP

Studiensemester
ab dem ersten Semester

Häufigkeit des Angebots
unregelmäßig

Beginn des Angebots
SoSe/WiS

Dauer
ein Semester

1 Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Kontakzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung 60 h 30 h</td>
<td>120 h 60 h</td>
<td>30 Studierende</td>
</tr>
<tr>
<td>b) Übung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen

3 Inhalte des Moduls
1. Komplexe und Hermitesche Geometrie.
 - Holomorphe und Hermitesche Vektorbündel
 - Chern-Zusammenhang
 - Laplace-Operatoren

2. Der spin-c Dirac-Operator
 - Der Clifford-Zusammenhang
 - Geometrische Dirac-Operatoren
 - Lichnerowicz-Formeln

3. Elliptische Differentialoperatoren
 - Distributionen und Sobolevräume
 - Spektralzerlegung elliptischer selbstadjungierter Operatoren
 - Hodge-Theorie

4. Anwendungen
 - Hodge- und Lefschetzzerlegung
 - Verschwindungs- und Einbettungssätze
 - Kähler-Einstein-Metriken
Lehr- und Lernformen
Vorlesung mit Übungen

Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
Inhaltlich: Stoff der Vorlesungen Analysis I und II sowie Lineare Algebra I und II

Form der Modulprüfung/Modulabschlussprüfung
Klausur oder mündliche Prüfung

Voraussetzungen für die Vergabe von Leistungspunkten

Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

Gesamtnote/Fachnote
9/114

Modulbeauftragte/r
Prof. Dr. G. Marinescu

Sonstige Informationen

Aufbaumodul Seminar:
Als Aufbaumodul Seminar kann entweder ein Seminar der Angewandten oder ein Seminar der Reinen Mathematik gewählt werden.

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Seminar Angewandte Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Kurztitel</td>
</tr>
<tr>
<td>o Aufbaumodul</td>
<td>AM-SemAngM</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>Workload</td>
</tr>
<tr>
<td></td>
<td>Leistungspunkte</td>
</tr>
<tr>
<td></td>
<td>Studiensemester</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MSc-M-SAM</td>
<td>180</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>a) Seminar</td>
<td>30 h</td>
</tr>
</tbody>
</table>

2 **Ziele des Moduls und zu erwerbende Kompetenzen**
Selbständiges Einarbeiten in anspruchsvolle mathematische (Original-)Literatur und Präsentieren von mathematischen Sachverhalten, Grundlagen des Arbeitens mit wissenschaftlicher Literatur.

3 **Inhalte des Moduls**
Ausgewählte Kapitel aus einem Vertiefungsgebiet der Angewandten Mathematik, die in der Regel mit Kenntnissen aus mindestens einer Vorlesung des Masterprogramms studiert werden können.
Zu Themen und Literatur vgl. das aktuelle Kommentierte Vorlesungs- bzw. Seminarverzeichnis.

4 **Lehr- und Lernformen**
Seminar

5 **Modulvoraussetzungen**
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master

6 **Form der Modulprüfung/Modulabschlussprüfung**
Referat/Präsentation, Dauer: 1 Stunde

7 **Voraussetzungen für die Vergabe von Leistungspunkten**
Vortrag und regelmäßige Teilnahme

8 **Verwendung des Moduls (in anderen Studiengängen)**
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik.

9 **Gesamtnote/Fachnote**
6/114

10 **Modulbeauftragte/r**
Die Dozent:innen des Departments Mathematik/Informatik

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Seminar Reine Mathematik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>o Aufbaumodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>AM-SemRM</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MSc-M-SRM</td>
</tr>
<tr>
<td>Workload</td>
<td>180</td>
</tr>
<tr>
<td>Leistungs punkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem zweiten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>SoSe/WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Seminar

2 Ziele des Moduls und zu erwerbende Kompetenzen
Selbständiges Einarbeiten in anspruchsvolle mathematische (Original-)Literatur und Präsentieren von mathematischen Sachverhalten, Grundlagen des Arbeiten mit wissenschaftlicher Literatur.

3 Inhalte des Moduls
Ausgewählte Kapitel aus einem Vertiefungsgebiet der Reinen Mathematik, die in der Regel mit Kenntnissen aus mindestens einer Vorlesung des Masterprogramms studiert werden können.
Zu Themen und Literatur vgl. das aktuelle Kommentierte Vorlesungs- bzw. Seminarverzeichnis.

4 Lehr- und Lernformen
Seminars

5 Modulvoraussetzungen
Formal: Zulassung zum Studium der Mathematik, Wirtschaftsmathematik bzw. Informatik mit Studienziel Master
|---|
| **6** | **Form der Modulprüfung/Modulabschlussprüfung**
Referat/Präsentation, Dauer: 1 Stunde |
| **7** | **Voraussetzungen für die Vergabe von Leistungspunkten**
Vortrag und regelmäßige Teilnahme |
| **8** | **Verwendung des Moduls (in anderen Studiengängen)**
Das Modul ist verwendbar in den Maststudiengängen Mathematik, Wirtschaftsmathematik und Informatik. |
| **9** | **Gesamtnote/Fachnote**
6/114 |
| **10** | **Modulbeauftragte/r**
Die Dozent:innen des Departments Mathematik/Informatik |
| **11** | **Sonstige Informationen** |
A.2 Physik

Das Studium im Anwendungsfeld Physik setzt sich aus den beiden Basismodulen Experimentalphysik (MSc-M-ExP) und Theoretische Physik I (MSc-M-TP1) und dem Aufbaumodul Theoretische Physik II (MSc-M-TP2) zusammen.

<table>
<thead>
<tr>
<th>Sem</th>
<th>Modul</th>
<th>K</th>
<th>VN</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basismodul Theoretische Physik I MSc-M-TP1</td>
<td>84 h</td>
<td>186 h</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Basismodul Experimentalphysik MSc-M-ExP</td>
<td>56 h</td>
<td>124 h</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Aufbaumodul Theoretische Physik II MSc-M-TP2</td>
<td>84 h</td>
<td>186 h</td>
<td>9</td>
</tr>
</tbody>
</table>

Das Basismodul Experimentalphysik (MSc-M-ExP) kann aus den Vorlesungen Festkörperphysik, Kern- und Teilchenphysik und Astrophysik gewählt werden. Zusätzlich kann vom Prüfungsausschuss die Wahl weiterer Vorlesungen der Experimentalphysik zugelassen werden, die nicht bereits im Bachelorprogramm gewählt wurden.

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Festkörperphysik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-FKP</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MN-P-Fest 180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>SoSe</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur SoSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
a) Vorlesung 42 h
b) Übung 14 h
c) Prüfungsvorbereitung ---

Selbststudium
63 h
42 h
19 h

geplante Gruppengröße
15-20 Studierende

Ziele des Moduls und zu erwerbende Kompetenzen
Beherrschung der wichtigsten Konzepte der Festkörperphysik / Verständnis der grundlegenden Eigenschaften von Materialien, wie zum Beispiel der mechanischen Festigkeit und dem elektrischen
Inhalte des Moduls
Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:

- Kristallstruktur
- reziproke Gitter
- Gitterschwingungen
- Bindungen in Kristallen
- Phononen
- elektronische Struktur von Stoffen
- thermische, optische, elektrische und magnetische Eigenschaften von Stoffen
- Supraleitung

Literaturempfehlungen:
Kittel, Introduction to Solid State Physics (Wiley and Sons)
Ibach Lüth, Festkörperphysik (Springer Berlin)
Ashcroft Mermin, Solid State Physics (Thomson learning)
Gross und Marx, Festkörperphysik (Oldenbourg Verlag)

Lehr- und Lernformen
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

Modulvoraussetzungen
Kenntnisse über Inhalt der Module Experimentalphysik I-III, Mathematische Methoden“ und „Vektoranalysis und Lineare Algebra“.

Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederholt werden.

Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung
| 7 | **Voraussetzungen für die Vergabe von Leistungspunkten** |
| | Das erfolgreiche Bestehen der Übungen und der Klausur. |

| 8 | **Verwendung des Moduls (in anderen Studiengängen)** |
| | Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet. |

| 9 | **Gesamtnote/Fachnote** |
| | 6/114 |

| 10 | **Modulbeauftragte/r** |
| | Prof. Dr. M. Braden |

| 11 | **Sonstige Informationen** |

Titel des Moduls
Kern- und Teilchenphysik

Art des Moduls
Basismodul

Kurztitel
BM-KTP

Kennnummer
MN-P-Kern

Workload
180 h

Leistungs punkte
6 LP

Studien semester
ab dem ersten Semester

Häufigkeit des Angebots
jedes Wintersemester

Beginn des Angebots
nur WiSe

Dauer
1 Semester

| 1 | **Lehrveranstaltungen**
 | a) Vorlesung
 | b) Übung
 | c) Prüfungsvorbereitung |
 | **Kontaktzeit**
 | 42 h
14 h
Selbststudium
63 h
42 h
19 h
geplante Gruppengröße
b) 15-20 Studierende in der Übung

Ziele des Moduls und zu erwerbende Kompetenzen
Kenntnisse grundlegender Konzepte der Kern- und Teilchenphysik
Übergreifende Methodenkenntnisse der Atom-, Kern und Teilchenphysik
Praktische Kenntnisse und berufliche Kompetenzen in Physik-Anwendungen
Übungen vertiefen die Problemlösungsfähigkeiten und die analytischen Fähigkeiten Studierende verbessern ihre kommunikativen Fähigkeiten und ihre Teamfähigkeit Inhalte der Vorlesung basieren auf Inhalten früherer Veranstaltungen und ermöglichen somit die Fähigkeit zur Selbsteinschätzung, Abstraktionsfähigkeit und eine erweiterte Lernfähigkeit. Vorlesung und Übung fördern das Zeitmanagement der Studierenden
3 Inhalte des Moduls
Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:

- Eigenschaften Atomkerne
- Kernkräfte & starke Wechselwirkungen
- Kernmodelle
- Zerfall instabiler Kerne und angeregte Zustände
- Beta Zerfall & schwache Wechselwirkung
- Invarianzprinzipien und Erhaltungssätze
- Quarkmodell der Hadronen
- Standardmodell der Elementarteilchenphysik

Literaturempfehlungen:
Bethge: Kernphysik (Springer)
Demtroeder: Experimentalphysik 4 (Springer)
Mayer-Kuckuk: Kernphysik (Teubner)
Krane: Introductory Nuclear Physics (Wiley & Sons)
Casten: Nuclear Structure from a Simple Perspective (Oxford University Press)
Heyde: Basic Ideas and Concepts in Nuclear Physics (Institute of Physics Publishing)
Povh, Rith, Scholz, Zetsche: Teilchen und Kerne (Springer)
Machner: Einführung in die Kern und Elementarteilchenphysik (Wiley)
Martin: Nuclear and Particle Physics (Wiley)

4 Lehr- und Lernformen
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 Modulvoraussetzungen
Kenntnisse über Inhalt des Moduls Experimentalphysik III.

6 Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederholt werden.
Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen, zur Vorbereitung auf eine Wiederholung der Klausur, ist möglich.
Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.
<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das erfolgreiche Bestehen der Übungen und der Klausur.</td>
</tr>
<tr>
<td>8</td>
<td>Verwendung des Moduls (in anderen Studiengängen)</td>
</tr>
<tr>
<td></td>
<td>Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.</td>
</tr>
<tr>
<td>9</td>
<td>Gesamtnote/Fachnote</td>
</tr>
<tr>
<td></td>
<td>6/114</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. P. Reiter</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
</tbody>
</table>

Titel des Moduls
Astrophysik

Art des Moduls
Basismodul

Kurztitel
BM-AstroP

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-Astro</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes Wintersemester</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Vorlesung</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
</tr>
<tr>
<td></td>
<td>c) Prüfungsvorbereitung</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>Selbststudium</td>
</tr>
<tr>
<td>42 h</td>
<td>63 h</td>
</tr>
<tr>
<td>14 h</td>
<td>42 h</td>
</tr>
<tr>
<td>---</td>
<td>19 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
<td></td>
</tr>
<tr>
<td>b) 15-20 Studierende</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anwendung physikalischer Prinzipien auf astrophysikalische Problemstellungen / Verständnis der grundlegenden Konzepte der Astrophysik / Überblick über experimentelle Methoden der Astronomie und selbstständige Behandlung einfacher Probleme in Übungsaufgaben.</td>
</tr>
<tr>
<td></td>
<td>Das Modul fordert und fördert die Kompetenzen analytisches Denkvermögen, Fähigkeiten, Probleme zu abstrahieren, neue Ideen und Lösungen zu entwickeln, wissenschaftliche Methoden anzuwenden, Teamfähigkeit, Fähigkeit, eigene und andere Ideen in Frage zu stellen, eigene Wissenslücken zu erkennen und zu schließen, effizient auf ein Ziel hinzuarbeiten, sich selbst und seinen Arbeitsprozess effektiv zu organisieren und mit anderen produktiv zusammenzuarbeiten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das Modul besteht aus einer Vorlesung mit Übungen, die die Grundlagen der Astronomie behandelt:</td>
</tr>
</tbody>
</table>
Stellare Astrophysik
- Eigenschaften, Innerer Aufbau und Entwicklung von Sternen
- Die Milchstrasse und externe Galaxien: interstellares Medium, Strahlungsprozesse, Struktur und Dynamik
- Grundlagen der Kosmologie: Verteilung der Materie im Universum, dunkle Materie, Urknall und Entwicklung

Literaturempfehlungen:
- Shu, The Physical Universe (University Science Books, Mill Valley California)
- Unsöld Baschek, Der neue Kosmos (Springer Verlag, Berlin)
- Weigert Wendker Wisotzki, Astronomie und Astrophysik (VCH Verlag, Weinheim)
- Carroll Ostlie, An Introduction to Modern Astrophysics (Pearson Education Limited)

Lehr- und Lernformen
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die in Arbeitsgruppen gelöst werden.

Modulvoraussetzungen
Kenntnisse über Inhalt der Module Experimentalphysik I, II und III.

Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind die erfolgreiche Bestehen der Übungen (> 50% der erreichbaren Punkte), sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.

Eine nicht bestandene Klausur kann wiederholt werden.

Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.

Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.

Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

Voraussetzungen für die Vergabe von Leistungspunkten
Das erfolgreiche Bestehen der Übungen und der Klausur.

Verwendung des Moduls (in anderen Studiengängen)
Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.

Gesamtnote/Fachnote
6/114

Modulbeauftragte/r
Prof. Dr. P. Schilke

Sonstige Informationen
Die Module **Theoretische Physik I, II** (MSc-M-TP1 bzw. MSc-M-TP2) können aus den Vorlesungen **Theoretische Physik IIIa** (Klassische Feldtheorie), **Theoretische Physik Iva** (Statistische Physik), **Advanced Statistical Physics**, **Advanced Quantum Mechanics** und **Computerphysik** gewählt werden. Zusätzlich kann vom Prüfungsausschuss die Wahl weiterer Vorlesungen der Theoretischen Physik zugelassen werden, die nicht bereits im Bachelorprogramm gewählt wurden.

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Theoretische Physik IIIa (Klassische Feldtheorie)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Basis-/Aufbaumodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BAM-TPIIla</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>MA-P-TP3a</td>
</tr>
<tr>
<td>Workload</td>
<td>270 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>9 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>jedes Wintersemester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>ein Semester</td>
</tr>
</tbody>
</table>

1. **Lehrveranstaltungen**
 a) Vorlesung
 b) Übung
 c) Prüfungsvorbereitung

2. **Kontaktzeit**
 a) Vorlesung
 56 h
 28 h

 b) Übung
 84 h
 84 h
 18 h
 c) Prüfungsvorbereitung

2. **Ziele des Moduls und zu erwerbende Kompetenzen**

Verständnis der Grundprinzipien mathematischer Naturbeschreibung / Fähigkeit zur Abstraktion physikalischer Phänomene in mathematische Sprache / Grundprinzipien physikalischer Theoriebildung: Axiomatik, Symmetrien, Erhaltungssätze / Umgang mit Differentialgleichungen als zentralem Werkzeug zur Beschreibung physikalischer Phänomene / Kenntnis der wichtigsten exakt lös- baren Modellprobleme der klassischen Physik / Wichtige Näherungsverfahren zur approximativen Lösung komplexer Probleme

Vorlesung und Übungen stellen hohe Ansprüche an das analytische Denkvermögen der Studierenden. Insbesondere soll auch die Fähigkeit entwickelt werden, Probleme zu abstrahieren.

Die Studierenden werden explizit aufgefordert, die Übungen und Prüfungsvorbereitung teilweise im Team zu bewältigen.

Die Übungen dienen neben der Vertiefung des Vorlesungsstoffs auch dem Erwerb von Kommunikationsfähigkeit und Präsentationskompetenz. Die Studierenden werden darauf hingewiesen, dass im Team die eigenen Stärken eine Hilfe für andere Studierende sein können und die eigenen Schwächen durch die Kompetenzen der anderen Teammitglieder ausgeglichen werden.
können. Damit schult das Modul soziale Kompetenzen wie Teamfähigkeit, Kommunikationsfähigkeit, Kritikfähigkeit und Durchsetzungsvermögen.

3 Inhalte des Moduls
Die Studierenden können frei wählen, ob sie der Klassischen Feldtheorie oder der Statistischen Physik mehr Gewicht in dem Studium geben. Dies bedeutet, es kann entweder
1. die Klassische Feldtheorie mit 9LPen (Modul Theoretische Physik IIIa) zusammen mit der Statistischen Physik mit 6LPen (Modul Theoretische Physik IVb)
oder
2. die Statistische Physik mit 9LPen (Modul Theoretische Physik IVa) zusammen mit der Klassischen Feldtheorie mit 6LPen (Modul Theoretische Physik IIIb)
gewählt werden. Die Module mit einem Umfang von 9LPen enthalten gegenüber den Modulen mit 6LPen eine Vertiefungskomponente.
In diesem Modul werden folgende Themen der Klassischen Feldtheorie behandelt:
- Historische und begriffliche Einleitung
- Spezielle Relativitätstheorie
- Die Grundgleichungen des elektromagnetischen Feldes
- Elektrostatik und Magnetostatik
- Elektromagnetische Wellen
- Eichinvarianz der Elektrodynamik
- Elektrodynamik kontinuierlicher Medien
- Die Grenzen der klassischen Elektrodynamik
- Vertiefung: z.B. Feldgleichungen der Gravitation und Gravitationswellen; Hydrodynamik, Solitonen

Literaturempfehlungen:
T. Fließbach - Elektrodynamik
J. Jackson, Klassische Elektrodynamik (Gruyter)
L. Landau und E. Lifschitz - Band II: Klassische Feldtheorie

4 Lehr- und Lernformen
Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 Modulvoraussetzungen
Kenntnisse über Inhalt der Module „Mathematische Methoden“ und „Vektoranalysis und Lineare Algebra.“

6 Form der Modulabschlussprüfung
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind das erfolgreiche Bestehen der Übungen, sowie eine Anmeldung
erforderlich. Vor Beginn oder am Anfang des Folgesemesters wird eine Wiederholungsklausur angeboten.
Die Klausurnote ist die Modulnote.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Das erfolgreiche Bestehen der Übungen und der Klausur.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9/114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. C. Kiefer</td>
</tr>
</tbody>
</table>

| 11 | Sonstige Informationen |

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretische Physik IVa (Statistische Physik)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis-/Aufbaumodul</td>
<td>BAM-TPIVa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs- punkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-P-TP4a</td>
<td>270 h</td>
<td>9 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes Wintersemester</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td></td>
</tr>
<tr>
<td>b) Übung</td>
<td></td>
</tr>
<tr>
<td>c) Prüfungsvorbereitung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>84 h</td>
<td>b) 15-20 Studierende</td>
</tr>
<tr>
<td>28 h</td>
<td>84 h</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>18 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verständnis der Grundprinzipien mathematischer Naturbeschreibung / Fähigkeit zur Abstraktion physikalischer Phänomene in mathematische Sprache / Grundprinzipien physikalischer Theoriebildung: Axiomatik, Symmetrien, Erhaltungssätze / Umgang mit Differentialgleichungen als zentralem Werkzeug zur Beschreibung physikalischer Phänomene / Kenntnis der wichtigsten exakt lösbaren Modellprobleme der klassischen Physik / Wichtige Näherungsverfahren zur approximativen Lösung komplexer Probleme</td>
</tr>
</tbody>
</table>

3 Inhalte des Moduls

Die Studierenden können frei wählen, ob sie der Klassischen Feldtheorie oder der Statistischen Physik mehr Gewicht in dem Studium geben. Dies bedeutet, es kann entweder

1. die Klassische Feldtheorie mit 9LPen (Modul Theoretische Physik IIIa) zusammen mit der Statistischen Physik mit 6LPen (Modul Theoretische Physik IVb)
oder
2. die Statistische Physik mit 9LPen (Modul Theoretische Physik IVa) zusammen mit der Klassischen Feldtheorie mit 6LPen (Modul Theoretische Physik IIIb)

gewählt werden. Die Module mit einem Umfang von 9LPen enthalten gegenüber den Modulen mit 6LPen eine Vertiefungskomponente. In diesem Modul werden folgende Themen der Statistischen Physik behandelt:

1. Statistische Beschreibung der Natur
 - Wahrscheinlichkeiten und Verteilungen, Mikro- und Makrozustände
 - Entropie und thermisches Gleichgewicht
 - Gleichgewichts-Ensembles und statistische Potentiale
 - Statistische Begründung der Thermodynamik
2. Thermodynamik
 - Potentiale, Relationen, Prozesse, Hauptsätze
 - Phasengleichgewichte
3. Gleichgewicht in wechselwirkungsfreien Systemen
 - Klassisches ideales Gas
 - Ideale Quantengase
4. Gleichgewicht in wechselwirkenden Systemen
 - Molekularfeld-Methode
 - Ferromagnetische Systeme, Phasenübergänge, kritische Phänomene
5. Vertiefung: z.B. Einführung in Nichtgleichgewichts-Phänomene und stochastische Prozesse; ungeordnete Systeme

Literaturempfehlungen:
Schwabl, Statistische Mechanik (Springer)
<table>
<thead>
<tr>
<th>Lehr- und Lernformen</th>
<th>Parallel zu der Vorlesung finden Übungen statt, in denen Übungsaufgaben gestellt werden, die gemittelt mit Erfolg zu bestehen sind. Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulvoraussetzungen</td>
<td>Kenntnisse über Inhalt der Module „Mathematische Methoden“ und „Vektoranalysis und Lineare Algebra.“</td>
</tr>
<tr>
<td>Voraussetzungen für die Vergabe von Leistungspunkten</td>
<td>Das erfolgreiche Bestehen der Übungen und der Klausur.</td>
</tr>
<tr>
<td>Verwendung des Moduls (in anderen Studiengängen)</td>
<td>Für Wahlbereiche anderer B.Sc oder M.Sc Studiengänge geeignet.</td>
</tr>
<tr>
<td>Gesamtnote/Fachnote</td>
<td>9/114</td>
</tr>
<tr>
<td>Modulbeauftragte/r</td>
<td>Prof. Dr. M. Lässig</td>
</tr>
<tr>
<td>Sonstige Informationen</td>
<td></td>
</tr>
</tbody>
</table>
Kennnummer | MN-P-PN-StatPhysII | Workload | 270 h | Leistungspunkte | 9 LP | Studiensemester | ab dem ersten Semester | Häufigkeit des Angebots | jedes Wintersemester | Beginn des Angebots | nur WiSe | Dauer | 1 Semester
---|---|---|---|---|---|---|---|---|---|---|---|---|---

1 Lehrveranstaltungen
a) Lecture
b) Problem Class
c) Preparation for exam
Kontaktzeit
56 h
28 h
--
Selbststudium
84 h
84 h
18 h

Ziele des Moduls und zu erwerbende Kompetenzen
The course introduces the students to key concepts required for the theoretical description of classical many-particle systems. Participation in the lecture course and the exercise sessions enables the students to analyze interacting many-particle systems on the level of mean field approximations and scaling arguments. The course is a mandatory prerequisite for the Area of Specialization (AoS) "Statistical and Biological Physics", and an optional prerequisite for the other AoS’s in theoretical physics.

Inhalte des Moduls
1. Macroscopic and microscopic degrees of freedom
 - conservation laws
 - fast and slow variables
 - elementary continuum mechanics and hydrodynamics
2. Phase transitions and critical phenomena
 - Universality
 - Landau theory
 - relevance of fluctuations
 - field-theoretic approach
3. Scaling and renormalization
4. Dynamics
 - Correlation- and response functions
 - Langevin- and Fokker-Planck equations
 - the Wiener integral
 - nonequilibrium stationary states
5. Disordered systems and glasses

Lehr- und Lernformen
The module consists of a lecture course, supplemented by a problem class.

Modulvoraussetzungen
Classical theoretical physics; elementary thermodynamics and statistical physics.
The module is passed by passing a written exam, which is held during the semester and is offered again at the beginning of the following semester. To be accepted for the written exam, students must actively participate in the problem class, solve the homework problems and register for the exam. A failed exam may be repeated twice. Failing the second repetition fails the entire module. (If the first possible exam appointment is perceived and the exam is not passed, the exam can be repeated three times. Here the module fails in the case that the third repetition as not passed.) A renewed participation in the lecture and the problem classes on a repetition of the exam is possible. (If the first possible appointment for the exam, after the achievement of acceptation to the exam, is used and this exam is passed, an admission occurs for the purpose of the improvement of the mark, by the next possible exam.) The failed module cannot be repeated and counts as final not passed. (Nevertheless, the failed module can be compensated by the module "Advanced Quantum Mechanics".) The grade given for the module is equal to the grade of the written exam.

The module is passed by passing a written exam.

As elective subject in other M.Sc. programs.

The module is passed by passing a written exam.

Literature:
Plischke Bergersen, Equilibrium statistical physics (World Scientific)
Goldenfeld, Lectures on phase transitions and the renormalization group (Westview Press)
Chaikin Lubensky, Principles of condensed matter physics (Cambridge University Press)
Modulsprache: englisch

Advanced Quantum Mechanics

BAM-AQM

MN-P-QMII

270 h

9 LP

ab dem ersten Semester

nur WiSe

ein Semester
<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Lecture</td>
<td>56 h</td>
<td>84 h</td>
<td>b) 15-20 students per problem class</td>
</tr>
<tr>
<td></td>
<td>b) Problem Class</td>
<td>28 h</td>
<td>84 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) Preparation for exam</td>
<td>--</td>
<td>18 h</td>
<td></td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen

Building on the foundational exposition of quantum mechanics in the Bachelor course program, this course introduces the student to various themes of advanced quantum mechanics that are required knowledge for doing master thesis research in experimental or theoretical physics. The course especially caters to the needs of students specializing in condensed matter physics and nuclear physics.

3 Inhalte des Moduls

1. Scattering theory
 - differential cross section
 - method of partial waves and scattering phases for systems with spherical symmetry
 - optical theorem, Lippmann-Schwinger equation, Born approximation
 - time-dependent scattering theory, Moeller operators
 - scattering matrix, multichannel scattering

2. The formalism of second quantization
 - construction of the Fock space for fermions and bosons
 - second quantization of one- and two-body operators
 - vacuum state and normal ordering
 - quantum theory of the free electromagnetic field

3. Relativistic quantum theory
 - Dirac equation, invariance properties (parity, time reversal, charge conjugation)
 - hole interpretation of the positron, nonrelativistic reduction
 - Pauli equation, spinors

4. Theory of angular momentum and spin
 - irreducible representations of the rotation and spin groups
 - Schur’s lemma, decomposition of tensor products

Clebsch-Gordan coefficients, Wigner-Eckart theorem, 3j- and 6j-symbols

4 Lehr- und Lernformen

The module consists of a lecture course, supplemented by a problem class.

5 Modulvoraussetzungen
Classical theoretical physics (mechanics and electrodynamics), basic quantum mechanics (as taught in a one-semester theoretical physics course on quantum mechanics).

6 **Form der Modulabschlussprüfung**
The module is passed by passing a written exam, which is held during the semester and is offered again at the beginning of the following semester. To be accepted for the written exam, students must actively participate in the problem class, solve the homework problems and register for the exam. A failed exam may be repeated twice. Failing the second repetition fails the entire module. (If the first possible exam appointment is perceived and the exam is not passed, the exam can be repeated three times. Here the module fails in the case that the third repetition as not passed.) A renewed participation in the lecture and the problem classes on a repetition of the exam is possible. (If the first possible appointment for the exam, after the achievement of acceptation to the exam, is used and this exam is passed, admission occurs for the purpose of the improvement of the mark, by the next possible exam.)

7 **Voraussetzungen für die Vergabe von Leistungspunkten**
The module is passed by passing a written exam.

8 **Verwendung des Moduls (in anderen Studiengängen)**
As elective subject in other M.Sc. programs.

9 **Gesamtnote/Fachnote**
9/114

10 **Modulbeauftragte/r**
Prof. Dr. M. Zirnbauer

11 **Sonstige Informationen**
Literature:
Sakurai, Modern Quantum Mechanics (Addison-Wesley)
Schwabl, Advanced Quantum Mechanics (Springer)
Modulsprache: englisch
1 Lehrveranstaltungen
a) Vorlesung
b) Übung
c) Prüfungsvorbereitung
Kontaktzeit
56 h
28 h

Selbststudium
84 h
84 h
18 h
geplante Gruppengröße
b) 20 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Vorlesung behandelt numerische Methoden zur Lösung physikalischer Probleme. Dabei werden zum einen wesentliche Algorithmen und numerische Verfahren eingeführt und ihre Anwendung auf Fragestellungen der Mechanik, Elektrodynamik, Quantenmechanik und statistischen Physik diskutiert. Zum anderen werden grundlegende Programmiertechniken illustriert und am Beispiel einer Programmiersprache (etwa Python oder C) konkretisiert, so dass die Studierenden hinreichend Programmiererfahrungen sammeln, um auch neue Fragestellungen numerisch behandeln zu können.
Eine wichtige Rolle dabei spielen die Übungen, bei denen kleine Programmierprojekte eigenständig bearbeitet werden.
Fachübergreifende Kompetenzen:
Fähigkeit, Probleme algorithmisch zu abstrahieren; Computer-Programmierung
Soft Skills:
Analytisches Denkvermögen; Kommunikation, insbesondere Kommunikation technisch abstrakter Zusammenhänge; Belastungsfähigkeit und Stressresistenz

3 Inhalte des Moduls
Das Modul besteht aus einer Vorlesung mit Übungen, die folgende Themen behandelt:
- Iterative Verfahren
- Numerische Lösung gewöhnlicher und partieller Differentialgleichungen
- Numerische Lösung von Gleichungssystemen, Eigenwertprobleme
- Zufallszahlen und Monte-Carlo Methoden
Parallel dazu werden folgende Aspekte der Programmiertechnik behandelt:
- Rechnerstrukturen
- Elementare algorithmische Strukturen (Schleifen, Verzweigung, Prozeduren)
- Einführung in eine imperative Programmiersprache (Python oder C)
- Einführende Aspekte objekt-orientierter Programmiertechniken
- Einführende Aspekte paralleler Programmiertechniken

Literaturempfehlungen:
Einführend:
T. Pang, An Introduction to Computational Physics, Cambridge University Press
Begleitend und weiterführend:
4 **Lehr- und Lernformen**
Parallel zu der Vorlesung finden Übungen statt, in denen die in der Vorlesung behandelten Verfahren implementiert werden. Die Übungen sind gemittelt mit Erfolg zu bestehen.
Eine genaue Definition des Erfolges wird vom Dozenten zu Beginn des Moduls bekannt gegeben.

5 **Modulvoraussetzungen**
Vorkenntnisse in einer Programmiersprache sind hilfreich, werden aber nicht vorausgesetzt.

6 **Form der Modulabschlussprüfung**
Zu Beginn der Semesterferien findet eine 120 bis 180-minütige Klausur statt, deren Inhalt der Stoff aus Vorlesung und Übungen ist. Zur Teilnahme an der Klausur sind die erfolgreiche Bestehen der Übungen, sowie eine Anmeldung erforderlich. Vor Beginn oder am Anfang des folgensemesters wird eine Wiederholungsklausur angeboten.
Eine nicht bestandene Klausur kann wiederholt werden.
Eine bestandene Klausur kann nicht wiederholt werden. Unbeschadet hiervon kann bei Wahrnehmung des ersten möglichen Prüfungstermins nach Erreichen der Prüfungszulassung, die Prüfung einmalig zur Notenverbesserung am nächsten möglichen Prüfungstermin, wiederholt werden.
Eine erneute Teilnahme an der Vorlesung und den Übungen zur Vorbereitung auf eine Wiederholung der Klausur ist möglich.
Die Klausurnote ist die Modulnote. Im Falle von zwei bestandenen Klausuren ist die bessere Note die Modulnote.

7 **Voraussetzungen für die Vergabe von Leistungspunkten**
Das erfolgreiche Bestehen der Übungen und der Klausur.

8 **Verwendung des Moduls (in anderen Studiengängen)**
Für Wahlbereiche anderer Physiknaher B.Sc oder M.Sc Studiengänge geeignet.

9 **Gesamtnote/Fachnote**
9/114

10 **Modulbeauftragte/r**
Prof. Dr. S. Trebst

11 **Sonstige Informationen**
A.3 Wirtschaftswissenschaften

Die Studien im Anwendungsfeld Wirtschaftswissenschaften bestehen aus einem Wahlpflichtbereich im Umfang von 24 LP. Die zur Wahl stehenden Module haben hierbei einen Umfang von 6 LP.

Im Nebenfach Wirtschaftswissenschaften kann einer der Ergänzungsbereiche **Accounting, Corporate Development, Finance, Marketing** und **Supply Chain Management** studiert werden.

Ergänzungsbereich *Accounting and Taxation*:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Controlling I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schwerpunktmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-Cont1</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>1016MSCO</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>jedes 2. Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1. **Lehrveranstaltungen**
 - Operative Controlling (2. Term)

2. **Kontaktzeit**
 - 45 h

3. **Selbststudium**
 - 135 h

4. **Ziele des Moduls und zu erwerbende Kompetenzen**
 - Die Studierenden... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich des operativen Controllings.
 - kommunizieren kontinuierlich und zielgerichtet in heterogenen Teams.
 - diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.

5. **Inhalte des Moduls**
 - Grundlagen des Controlling
 - Theorie, Konzepte und Methoden zur Fundierung des Controlling
 - Controllinginstrumente

6. **Lehr- und Lernformen**
 - Vorlesung
 - Übung

7. **Modulvoraussetzungen**
 - Empfehlung: Grundkenntnisse des internen und externen Rechnungswesens, der Investition und Finanzierung sowie der Entscheidungstheorie

8. **Form der Modulabschlussprüfung**
 - Schriftliche Prüfung: KL (60)
<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Business Administration - Accounting and Taxation: Schwerpunktbereich Accounting and Taxation</td>
</tr>
<tr>
<td></td>
<td>Master of Science Information Systems: Ergänzungsbereich Information Systems</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Finance: Ergänzungsbereich Finance</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Supply Chain Management: Ergänzungsbereich Supply Chain Management</td>
</tr>
<tr>
<td></td>
<td>Master of Science Gesundheitsökonomie: Ergänzungsbereich Gesundheitsökonomie</td>
</tr>
<tr>
<td></td>
<td>Master of Science International Management: Ergänzungsbereich International Management</td>
</tr>
<tr>
<td></td>
<td>Master of Science Economics: Ergänzungsbereich Management & Social Sciences</td>
</tr>
<tr>
<td></td>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs: Ergänzungsbereich Wirtschaftspädagogik</td>
</tr>
<tr>
<td></td>
<td>Master of Science Data Analytics & Econometrics: Ergänzungsbereich Data Analytics & Econometrics</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien China - Betriebswirtschaftslehre: Ergänzungsbereich Business Administration</td>
</tr>
<tr>
<td></td>
<td>Master of Science Mathematik: Wirtschaftswissenschaften</td>
</tr>
<tr>
<td></td>
<td>Master of Science Wirtschaftsmathematik: Wirtschaftswissenschaften</td>
</tr>
<tr>
<td></td>
<td>Master of Science Geographie: Wahlpflichtfach Management & Social Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univ.-Prof. Dr. Carsten Homburg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Veranstaltung des Moduls findet in der ersten Semesterhälfte statt und wird am Ende dieser geprüft.</td>
</tr>
<tr>
<td>Titel des Moduls</td>
<td>SM Controlling II</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>Schwerpunktmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-Cont2</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>1016MSCO N2</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>jedes 2. Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative Controlling (1. Term)</td>
<td>45 h</td>
<td>135 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden...</td>
</tr>
<tr>
<td>... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich des strategischen Controllings.</td>
</tr>
<tr>
<td>... kommunizieren kontinuierlich und zielgerichtet in heterogenen Teams.</td>
</tr>
<tr>
<td>... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.</td>
</tr>
<tr>
<td>... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Einführung in das strategische Controlling</td>
</tr>
<tr>
<td>• Traditionelle Instrumente des Kostenmanagements</td>
</tr>
<tr>
<td>• Neuere Instrumente des Kostenmanagements</td>
</tr>
<tr>
<td>• Benchmarking</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
</tr>
<tr>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlung: Grundkenntnisse des internen und externen Rechnungswesens, der Investition und Finanzierung sowie der Entscheidungstheorie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 Form der Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: KL (60)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Business Administration - Accounting and Taxation: Schwerpunktbereich Accounting and Taxation</td>
</tr>
<tr>
<td>Master of Science Information Systems: Ergänzungsbereich Information Systems</td>
</tr>
<tr>
<td>Master of Science Business Administration - Corporate Development:</td>
</tr>
</tbody>
</table>
Ergänzungsbereich Corporate Development
Master of Science Business Administration - Finance:
 Erganzungsbereich Finance
Master of Science Business Administration - Marketing:
 Erganzungsbereich Marketing
Master of Science Business Administration - Supply Chain Management:
 Erganzungsbereich Supply Chain Management
Master of Science Gesundheitsökonomie:
 Erganzungsbereich Gesundheitsökonomie
Master of Science International Management:
 Erganzungsbereich International Management
Master of Science Economics:
 Erganzungsbereich Management & Social Sciences
Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:
 Erganzungsbereich Wirtschaftspädagogik
Master of Science Data Analytics & Econometrics:
 Erganzungsbereich Data Analytics & Econometrics
Master of Arts Regionalstudien China - Betriebswirtschaftslehre:
 Erganzungsbereich Business Administration
Master of Science Matematik:
 Wirtschaftswissenschaften
Master of Science Wirtschaftsmathematik:
 Wirtschaftswissenschaften
Master of Science Geographie:
 Wahlpflichtfach Management & Social Sciences

9 Gesamtnote/Fachnote
 6/114

10 Modulbeauftragte/r
 Univ.-Prof. Dr. Carsten Homburg

11 Sonstige Informationen
 Die Veranstaltung des Moduls findet in der zweiten Semesterhälfte statt und wird am Ende dieser geprüft.

Titel des Moduls
SM Accounting I

Art des Moduls
 o Schwerpunktmodul

Kurztitel
SM-Acc1

Kennennummer
1016MSAC C1

Workload
180 h

Leistungspunkte
6 LP

Studiensemester
ab dem ersten Semester

Häufigkeit des Angebots
jedes 2. Semester

Beginn des Angebots
nur WiSe

Dauer
1 Semester
<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengrösse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unternehmensbewertung</td>
<td>45 h</td>
<td>135 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden...</td>
<td></td>
</tr>
<tr>
<td>... verstehen weiterführende, spezialisierte Theorien / Methoden auf dem Gebiet der Unternehmensbewertung.</td>
<td></td>
</tr>
<tr>
<td>... analysieren reale Fragestellungen und Herausforderungen auf dem Gebiet der Unternehmensbewertung.</td>
<td></td>
</tr>
<tr>
<td>... erwerben Kompetenz zur Differenzierung unterschiedlicher Anlässe, Zwecke und dogmatischer Konzeptionen der Unternehmensbewertung.</td>
<td></td>
</tr>
<tr>
<td>... wenden die Grundregeln der investitionstheoretischen Bewertungslehre auf Unternehmensbewertungsprobleme an.</td>
<td></td>
</tr>
<tr>
<td>... erstellen Cash Flow-Prognosen.</td>
<td></td>
</tr>
<tr>
<td>... erwerben Kompetenzen zum zielbezogenen Einsatz der unterschiedlichen Varianten der DCF- Methode und anderer moderner Bewertungsmethoden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Anlässe, Zwecke, Dogmengeschichte</td>
<td></td>
</tr>
<tr>
<td>• Äquivalenzprinzipien</td>
<td></td>
</tr>
<tr>
<td>• Prognoseregeln und -Instrumente</td>
<td></td>
</tr>
<tr>
<td>• Risikonutzenansatz der Unternehmensbewertung</td>
<td></td>
</tr>
<tr>
<td>• Kapitalmarktorientierte Bewertungsmethoden</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: KL (60)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Modulabschlussprüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Business Administration - Accounting and Taxation:</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktbereich Accounting and Taxation</td>
<td></td>
</tr>
<tr>
<td>Master of Science Information Systems:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Information Systems</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Corporate Development:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Corporate Development</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Finance:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Finance</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Marketing:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Marketing</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Supply Chain Management:</td>
<td></td>
</tr>
</tbody>
</table>
Ergänzungsbereich Supply Chain Management
Master of Science Gesundheitsökonomie:
 Ergänzungsbereich Gesundheitsökonomie
Master of Science International Management:
 Ergänzungsbereich International Management
Master of Science Economics:
 Ergänzungsbereich Management & Social Sciences
Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:
 Ergänzungsbereich Wirtschaftspädagogik
Master of Science Data Analytics & Econometrics:
 Ergänzungsbereich Data Analytics & Econometrics
Master of Arts Regionalstudien China - Betriebswirtschaftslehre:
 Ergänzungsbereich Business Administration
Master of Science Mathematik:
 Wirtschaftswissenschaften
Master of Science Wirtschaftsmathematik:
 Wirtschaftswissenschaften
Master of Science Geographie:
 Wahlpflichtfach Management & Social Sciences

9 Gesamtnote/Fachnote
6/114

10 Modulbeauftragte/r
N. N.

11 Sonstige Informationen
Die Prüfung wird jedes Semester angeboten.

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Taxation I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schwerpunktmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-Tax1</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>1016MSTA X1</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>jedes 2. Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
Besteuerung der Unternehmen I
Kontaktzeit
45 h
Selbststudium
135 h
geplante Gruppengröße

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden auf dem Gebiet der Unternehmensbewertung.
... analysieren reale Fragestellungen und Herausforderungen auf dem Gebiet der Unternehmensbewertung.
... erwerben Kompetenz zur Differenzierung unterschiedlicher Anlässe, Zwecke und dogmatischer Konzeptionen der Unternehmensbewertung.
... wenden die Grundregeln der investitionstheoretischen Bewertungslehre auf Unternehmensbewertungsprobleme an.
... erstellen Cash Flow-Prognosen.
... erwerben Kompetenzen zum zielbezogenen Einsatz der unterschiedlichen Varianten der DCF- Methode und anderer moderner Bewertungsmethoden.

3	Inhalte des Moduls
	Laufende Ertragsbesteuerung der Unternehmen
	Besteuerung in Abhängigkeit von der Rechtsform (Personenunternehmen und Kapitalgesellschaften)
	Rechtsformoptimierung
	Internationale Besteuerung
	Doppelbesteuerungsproblematik und Umgang mit Maßnahmen zur Verhinderung von Steuerarbitrage
	Vertiefung anhand von Übungsfällen

4	Lehr- und Lernformen
	Vorlesung
	Übung

| 5 | Modulvoraussetzungen |
| | keine |

| 6 | Form der Modulabschlussprüfung |
| | Schriftliche Prüfung: KL (60) |

| 7 | Voraussetzungen für die Vergabe von Leistungspunkten |
| | Bestehen der Modulabschlussprüfung |

<p>| 8 | Verwendung des Moduls (in anderen Studiengängen) |
| | Master of Science Business Administration - Accounting and Taxation: Schwerpunktbereich Accounting and Taxation |
| | Master of Science Information Systems: Ergänzungsbereich Information Systems |
| | Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development |
| | Master of Science Business Administration - Finance: Ergänzungsbereich Finance |
| | Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing |
| | Master of Science Business Administration - Supply Chain Management: |</p>
<table>
<thead>
<tr>
<th>Ergänzungsbereich Supply Chain Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Gesundheitsökonomie:</td>
</tr>
<tr>
<td>Ergänzungsbereich Gesundheitsökonomie</td>
</tr>
<tr>
<td>Master of Science International Management:</td>
</tr>
<tr>
<td>Ergänzungsbereich International Management</td>
</tr>
<tr>
<td>Master of Science Economics:</td>
</tr>
<tr>
<td>Ergänzungsbereich Management & Social Sciences</td>
</tr>
<tr>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:</td>
</tr>
<tr>
<td>Ergänzungsbereich Wirtschaftspädagogik</td>
</tr>
<tr>
<td>Master of Science Data Analytics & Econometrics:</td>
</tr>
<tr>
<td>Ergänzungsbereich Data Analytics & Econometrics</td>
</tr>
<tr>
<td>Master of Arts Regionalstudien China - Betriebswirtschaftslehre:</td>
</tr>
<tr>
<td>Ergänzungsbereich Business Administration</td>
</tr>
<tr>
<td>Master of Science Mathematik:</td>
</tr>
<tr>
<td>Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Master of Science Wirtschaftsmathematik:</td>
</tr>
<tr>
<td>Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Master of Science Geographie:</td>
</tr>
<tr>
<td>Wahlpflichtfach Management & Social Sciences</td>
</tr>
</tbody>
</table>

9 Gesamtnote/Fachnote 6/114

10 Modulbeauftragte/r
Univ.-Prof. Dr. Michael Overesch

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Advanced Accounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>o Schwerpunktmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-AdAcc</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>1016MSAA C1</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>jedes 2. Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur SoSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
Value-based Controlling
Kontaktzeit 45 h
Selbststudium 135 h
geplante Gruppengröße

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden.
... analysieren reale Fragestellungen und Herausforderungen.
... sammeln, systematisieren und synthetisieren eigenständig Literatur zu ausgewählten wissenschaftlichen Fragestellungen.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.
... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Grundlagen des wertorientieren Controllings (u.a. traditionelle Finanzkennzahlen)</td>
</tr>
<tr>
<td></td>
<td>• Charakteristika von Kapitalmärkten</td>
</tr>
<tr>
<td></td>
<td>• Auswirkungen der Kapitalstruktur auf den Unternehmenswert</td>
</tr>
<tr>
<td></td>
<td>• Der Shareholder Value-Ansatz</td>
</tr>
<tr>
<td></td>
<td>• Diverse Discounted Cash Flow (DCF) Verfahren</td>
</tr>
<tr>
<td></td>
<td>• Wertorientierte Kennzahlen und deren Steuerung</td>
</tr>
<tr>
<td></td>
<td>• Working Capital Management, insb. Cash Management</td>
</tr>
<tr>
<td></td>
<td>• Risikomessung und -management</td>
</tr>
<tr>
<td></td>
<td>• Umsetzung einer wertorientierten Strategie</td>
</tr>
<tr>
<td></td>
<td>• Das Ohlson Modell</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Empfehlung: Grundkenntnisse des internen und externen Rechnungswesens, der Investition und Finanzierung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (60)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Business Administration - Accounting and Taxation:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktbereich Accounting and Taxation</td>
</tr>
<tr>
<td></td>
<td>Master of Science Information Systems:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Information Systems</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Corporate Development:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Corporate Development</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Finance:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Finance</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Marketing:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Marketing</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Supply Chain Management:</td>
</tr>
</tbody>
</table>
Ergänzungsbereich Supply Chain Management
- Master of Science Gesundheitsökonomie:
- Ergänzungsbereich Gesundheitsökonomie
- Master of Science International Management:
- Ergänzungsbereich International Management
- Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:
- Ergänzungsbereich Wirtschaftspädagogik
- Master of Science Data Analytics & Econometrics:
 - Ergänzungsbereich Data Analytics & Econometrics
- Master of Science Mathematik:
 - Wirtschaftswissenschaften
- Master of Science Wirtschaftsmathematik:
 - Wirtschaftswissenschaften

9 Gesamtnote/Fachnote
- 6/114

10 Modulbeauftragte/r
- Univ.-Prof. Dr. Carsten Homburg

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Accounting & Taxation Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schwerpunktmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-AccTaxSem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1016MSAT S1</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes 2. Semester</td>
<td>nur SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Seminar Unternehmensbesteuerung</td>
</tr>
<tr>
<td>b) Seminar Rechnungsweisen</td>
</tr>
<tr>
<td>c) Seminar Controlling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Kontaktzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 30 h</td>
</tr>
<tr>
<td>b) 30 h</td>
</tr>
<tr>
<td>c) 30 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 150 h</td>
</tr>
<tr>
<td>b) 150 h</td>
</tr>
<tr>
<td>c) 150 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 geplante Gruppengröße</th>
</tr>
</thead>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... erheben und analysieren Daten / Informationen mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
... sammeln, systematisieren und synthetisieren eigenständig Literatur zu ausgewählten wissenschaftlichen Fragestellungen.
... erstellen eine wissenschaftliche Arbeit zu einem ausgewählten Thema und leisten dabei einen eigenständigen wissenschaftlichen Beitrag.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat.
... präsentieren wissenschaftliche Ergebnisse adressatengerecht.
... beurteilen in Selbst- und Fremdreflexion Ihren eigenen Handlungsprozess und erfassen Entwicklungspotentiale.
... verwenden selbstständig Techniken des wissenschaftlichen Arbeitens und der guten wissenschaftlichen Praxis.

3 Inhalte des Moduls
Aktuelle Fragestellungen zum Controlling oder zum Rechnungswesen oder zur Unternehmensbesteuerung

4 Lehr- und Lernformen
Seminar

5 Modulvoraussetzungen
keine

6 Form der Modulabschlussprüfung
Kombinierte Prüfung: RE, HA

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Modulabschlussprüfung eines Kurses. Ein Kurs ist zu besuchen; die Prüfung bezieht sich auf den Inhalt eines Kurses.

8 Verwendung des Moduls (in anderen Studiengängen)
Master of Science Business Administration - Accounting and Taxation:
 Schwerpunktbereich Accounting and Taxation
Master of Science Information Systems:
 Ergänzungsbereich Information Systems
Master of Science Business Administration - Corporate Development:
 Ergänzungsbereich Corporate Development
Master of Science Business Administration - Finance:
 Ergänzungsbereich Finance
Master of Science Business Administration - Marketing:
 Ergänzungsbereich Marketing
Master of Science Business Administration - Supply Chain Management:
 Ergänzungsbereich Supply Chain Management
Master of Science International Management:
 Ergänzungsbereich International Management
Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:
 Ergänzungsbereich Wirtschaftspädagogik
Master of Science Mathematik: Wirtschaftswissenschaften
Master of Science Wirtschaftsmathematik: Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Accounting an Taxation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
</table>

Titel des Moduls
SM Selected Issues in Accounting and Taxation I

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Schwerpunktmodul</td>
<td>SM-SI-AccTax1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1016MSSIS1</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes 2. Semester</td>
<td>nur SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Tax Accounting</td>
<td></td>
</tr>
<tr>
<td>b) Financial Service and Real Estate Taxation</td>
<td></td>
</tr>
<tr>
<td>c) Besteuerung von Familienunternehmen</td>
<td></td>
</tr>
<tr>
<td>d) Selected Issues in Controlling I</td>
<td></td>
</tr>
<tr>
<td>e) Jahresabschlussprüfung</td>
<td></td>
</tr>
<tr>
<td>f) Sonderprüfungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Kontaktzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 30 h</td>
<td></td>
</tr>
<tr>
<td>b) 30 h</td>
<td></td>
</tr>
<tr>
<td>c) 30 h</td>
<td></td>
</tr>
<tr>
<td>d) 30 h</td>
<td></td>
</tr>
<tr>
<td>e) 30 h</td>
<td></td>
</tr>
<tr>
<td>f) 30 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 60 h</td>
<td></td>
</tr>
<tr>
<td>b) 60 h</td>
<td></td>
</tr>
<tr>
<td>c) 60 h</td>
<td></td>
</tr>
<tr>
<td>d) 60 h</td>
<td></td>
</tr>
<tr>
<td>e) 60 h</td>
<td></td>
</tr>
<tr>
<td>f) 60 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden in Rechnungswesen und Besteuerung.
... analysieren reale Fragestellungen und Herausforderungen in Rechnungswesen und Besteuerung.
... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... diskutieren Themen fachgerecht und situationsadäquat.
... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ausgewählte Themenbereiche aus Controlling, Rechnungswesen, Wirtschaftsprüfung oder Unternehmenssteuern</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: PO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung; Zwei Lehrveranstaltungen sollen belegt werden; die Prüfung bezieht sich auf die Inhalte von zwei Lehrveranstaltungen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Business Administration - Accounting and Taxation:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktbereich Accounting and Taxation</td>
</tr>
<tr>
<td></td>
<td>Master of Science Information Systems:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Information Systems</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Corporate Development:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Corporate Development</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Finance:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Finance</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Marketing:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Marketing</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Supply Chain Management:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Supply Chain Management</td>
</tr>
<tr>
<td></td>
<td>Master of Science Gesundheitsökonomie:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Gesundheitsökonomie</td>
</tr>
<tr>
<td></td>
<td>Master of Science International Management:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich International Management</td>
</tr>
<tr>
<td></td>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Wirtschaftspädagogik</td>
</tr>
<tr>
<td></td>
<td>Master of Science Mathematik:</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftswissenschaften</td>
</tr>
<tr>
<td></td>
<td>Master of Science Wirtschaftsmathematik:</td>
</tr>
<tr>
<td></td>
<td>Wirtschaftswissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/114</td>
</tr>
</tbody>
</table>

| 10 | Modulbeauftragte/r |
| | Area Accounting an Taxation |

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
</table>
Ergänzungsbereich Corporate Development:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Corporate Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Ethics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄 Schwerpunktmodul</td>
<td>SM-BE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1253MSBE</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes 2. Semester</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen

Managing Business Ethics in Markets and Organisations

2 Kontaktzeit

60 h

Selbststudium

120 h

geplante Gruppengröße

3 Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...

... verstehen weiterführende, spezialisierte Theorien / Methoden.

... analysieren reale Fragestellungen und Herausforderungen.

... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.

... lösen teaminterne Konflikte und Zieldivergenzen selbstständig.

... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.

... beurteilen in Selbst- und Fremdreflexion Ihren eigenen Handlungsprozess und erfassen Entwicklungspotentiale.

... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.

... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.

3 Inhalte des Moduls

In diesem Modul werden grundlegende Konzepte der Unternehmensethik vorgestellt und auf die Entscheidungsfindung von Managern und Mitarbeitern angewendet. Es stützt sich auf Standardtheorien der Ethik wie Teleologie, Deontologie, Tugendethik und Fairnesskonzepte. Vor dem Hintergrund dieser Grundlagen werden unternehmerische Entscheidungen in Organisationen und Märkten diskutiert und bewertet. Anhand von Fallstudien werden die theoretischen Konzepte veranschaulicht und angewendet.
4 Lehr- und Lernformen
 Vorlesung
 Übung

5 Modulvoraussetzungen
 Keine

6 Form der Modulprüfung/Modulabschlussprüfung
 Schriftliche Prüfung: KL (60)

7 Voraussetzungen für die Vergabe von Leistungspunkten
 Bestehen der Modulabschlussprüfung

8 Verwendung des Moduls (in anderen Studiengängen)
 Master of Science Business Administration - Accounting and Taxation:
 Schwerpunktbereich Accounting and Taxation
 Master of Science Information Systems:
 Ergänzungsbereich Information Systems
 Master of Science Business Administration - Corporate Development:
 Ergänzungsbereich Corporate Development
 Master of Science Business Administration - Finance:
 Ergänzungsbereich Finance
 Master of Science Business Administration - Marketing:
 Ergänzungsbereich Marketing
 Master of Science Business Administration - Supply Chain Management:
 Ergänzungsbereich Supply Chain Management
 Master of Science Gesundheitsökonomie:
 Ergänzungsbereich Gesundheitsökonomie
 Master of Science Sociology - Social Research:
 Ergänzungsbereich Sociology: Social Research
 Master of Science Sociology - Social and Economic Psychology:
 Ergänzungsbereich Sociology: Social and Economic Psychology
 Master of Science International Management:
 Ergänzungsbereich International Management
 Master of Science Economics:
 Ergänzungsbereich Management & Social Sciences
 Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:
 Ergänzungsbereich Wirtschaftspädagogik
 Master of Science Medienwissenschaft:
 Ergänzungsbereich Medienmanagement und Medienökonomie
 Master of Arts Regionalstudien China - Betriebswirtschaftslehre:
 Ergänzungsbereich Business Administration
 Master of Science Mathematik:
 Wirtschaftswissenschaften
 Master of Science Wirtschaftsmathematik:
 Wirtschaftswissenschaften
 Master of Science Geographie:
 Wahlpflichtfach Management & Social Sciences
Titel des Moduls

SM Strategic Development

Art des Moduls

<table>
<thead>
<tr>
<th>Schwerpunktmodul</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-StDev</td>
<td></td>
</tr>
</tbody>
</table>

Kennnummer

<table>
<thead>
<tr>
<th>1253MSSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
</tr>
</tbody>
</table>

Workload

<table>
<thead>
<tr>
<th>180 h</th>
</tr>
</thead>
</table>

Leistungspunkte

<table>
<thead>
<tr>
<th>6 LP</th>
</tr>
</thead>
</table>

Studiensemester

<table>
<thead>
<tr>
<th>ab dem ersten Semester</th>
</tr>
</thead>
</table>

Häufigkeit des Angebots

<table>
<thead>
<tr>
<th>jedes 2. Semester</th>
</tr>
</thead>
</table>

Beginn des Angebots

<table>
<thead>
<tr>
<th>nur WiSe</th>
</tr>
</thead>
</table>

Dauer

<table>
<thead>
<tr>
<th>1 Semester</th>
</tr>
</thead>
</table>

Lehrveranstaltungen

1. **Mergers and Acquisitions**

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>120 h</td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...

1. verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Unternehmensentwicklung.
2. analysieren reale Fragestellungen und Herausforderungen im Bereich Unternehmensentwicklung.
3. bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
4. begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
5. diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.
6. handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.

Inhalte des Moduls

Zentrale Fragestellungen des Corporate Developments
<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (60)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Business Administration - Accounting and Taxation: Schwerpunktbereich Accounting and Taxation</td>
</tr>
<tr>
<td></td>
<td>Master of Science Information Systems: Ergänzungsbereich Information Systems</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Finance: Ergänzungsbereich Finance</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Supply Chain Management: Ergänzungsbereich Supply Chain Management</td>
</tr>
<tr>
<td></td>
<td>Master of Science Sociology - Social Research: Ergänzungsbereich Sociology: Social Research</td>
</tr>
<tr>
<td></td>
<td>Master of Science International Management: Ergänzungsbereich International Management</td>
</tr>
<tr>
<td></td>
<td>Master of Science Economics: Ergänzungsbereich Management & Social Sciences</td>
</tr>
<tr>
<td></td>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs: Ergänzungsbereich Wirtschaftspädagogik</td>
</tr>
<tr>
<td></td>
<td>Master of Science Medienwissenschaft: Ergänzungsbereich Medienmanagement und Medienökonomie</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien China - Betriebswirtschaftslehre: Ergänzungsbereich Business Administration</td>
</tr>
<tr>
<td></td>
<td>Master of Science Mathematik: Wirtschaftswissenschaften</td>
</tr>
<tr>
<td></td>
<td>Master of Science Wirtschaftsmathematik: Wirtschaftswissenschaften</td>
</tr>
<tr>
<td></td>
<td>Master of Science Geographie: Wahlpflichtfach Management & Social Sciences</td>
</tr>
</tbody>
</table>

| 9 | Gesamtnote/Fachnote |
Titel des Moduls

SM Strategic Human Resource Management

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Schwerpunktmodul</td>
<td>SM-SHRM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1253MSSH R1</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes 2. Semester</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strategic Human Resource Management</td>
<td>60 h</td>
<td>120 h</td>
<td>geplante Gruppengröße</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden...</td>
<td></td>
</tr>
<tr>
<td>... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich des Personalmanagements.</td>
<td></td>
</tr>
<tr>
<td>... analysieren reale Fragestellungen und Herausforderungen des Personalmanagements.</td>
<td></td>
</tr>
<tr>
<td>... kommunizieren kontinuierlich und zielgerichtet in heterogenen Teams.</td>
<td></td>
</tr>
<tr>
<td>... lösen teaminterne Konflikte und Zieldivergenzen selbstständig.</td>
<td></td>
</tr>
<tr>
<td>... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.</td>
<td></td>
</tr>
<tr>
<td>... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.</td>
<td></td>
</tr>
<tr>
<td>... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul vermittelt wie Personalmanagement ökonomischen Wert schafft und zur Umsetzung von Unternehmensstrategien beiträgt.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 5 | Modulvoraussetzungen |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keine</td>
</tr>
</tbody>
</table>
| 6 | **Form der Modulprüfung/Modulabschlussprüfung**
Schriftliche Prüfung: KL (60), RE |
| 7 | **Voraussetzungen für die Vergabe von Leistungspunkten**
Bestehen der Modulabschlussprüfung |
| 8 | **Verwendung des Moduls (in anderen Studiengängen)**
Master of Science Business Administration - Accounting and Taxation:
 Schwerpunktbereich Accounting and Taxation
Master of Science Information Systems:
 Ergänzungsbereich Information Systems
Master of Science Business Administration - Corporate Development:
 Ergänzungsbereich Corporate Development
Master of Science Business Administration - Finance:
 Ergänzungsbereich Finance
Master of Science Business Administration - Marketing:
 Ergänzungsbereich Marketing
Master of Science Business Administration - Supply Chain Management:
 Ergänzungsbereich Supply Chain Management
Master of Science Gesundheitsökonomie:
 Ergänzungsbereich Gesundheitsökonomie
Master of Science Sociology - Social Research:
 Ergänzungsbereich Sociology: Social Research
Master of Science Sociology - Social and Economic Psychology:
 Ergänzungsbereich Sociology: Social and Economic Psychology
Master of Science International Management:
 Ergänzungsbereich International Management
Master of Science Economics:
 Ergänzungsbereich Management & Social Sciences
Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:
 Ergänzungsbereich Wirtschaftspädagogik
Master of Science Medienwissenschaft:
 Ergänzungsbereich Medienmanagement und Medienökonomie
Master of Arts Regionalstudien China - Betriebswirtschaftslehre:
 Ergänzungsbereich Business Administration
Master of Science Mathematik:
 Wirtschaftswissenschaften
Master of Science Wirtschaftsmathematik:
 Wirtschaftswissenschaften
Master of Science Geographie:
 Wahlpflichtfach Management & Social Sciences
Master of Science Economic Research:
 Ergänzungsbereich Economic Research |
| 9 | **Gesamtnote/Fachnote**
6/114 |
<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univ.-Prof. Dr. Dirk Sliwka</td>
</tr>
</tbody>
</table>

| 11 | Sonstige Informationen |

Titel des Moduls
SM Strategic Management

Art des Moduls
- Schwerpunktmodul

Kurztitel
SM-StManag

Kennnummer
1253MSSM G1

Workload
180 h

Leistungspunkte
6 LP

Studiensemester
ab dem ersten Semester

Häufigkeit des Angebots
jedes 2. Semester

Beginn des Angebots
nur WiSe

Dauer
1 Semester

1 **Lehrveranstaltungen**
- Strategic Management (1. Term)

2 **Kontaktzeit**
- 60 h

3 **Selbststudium**
- 120 h

4 **geplante Gruppengröße**

Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...
- ... analysieren reale Fragestellungen und Herausforderungen.
- ... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
- ... erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
- ... kommunizieren kontinuierlich und zielgerichtet in heterogenen Teams.
- ... lösen teaminterne Konflikte und Zieldivergenzen selbstständig.
- ... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
- ... präsentieren wissenschaftliche Ergebnisse adressatengerecht.
- ... beurteilen in Selbst- und Fremdreflexion Ihren eigenen Handlungsprozess und erfassen Entwicklungspotentiale.
- ... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.
- ... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.
- ... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.

Inhalte des Moduls
- Grundlagen zum strategischen Management
- Grundlegende Konzepte zur Analyse von strategischer Positionierung von Firmen am Markt
<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
<tr>
<td>5</td>
<td>Modulvoraussetzungen</td>
</tr>
<tr>
<td></td>
<td>Keine</td>
</tr>
<tr>
<td>6</td>
<td>Form der Modulprüfung/Modulabschlussprüfung</td>
</tr>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (60)</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Vergabe von Leistungspunkten</td>
</tr>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

8 **Verwendung des Moduls (in anderen Studiengängen)**
 - Master of Science Business Administration - Accounting and Taxation:
 - Schwerpunktbereich Accounting and Taxation
 - Master of Science Information Systems:
 - Ergänzungsbereich Information Systems
 - Master of Science Business Administration - Corporate Development:
 - Ergänzungsbereich Corporate Development
 - Master of Science Business Administration - Finance:
 - Ergänzungsbereich Finance
 - Master of Science Business Administration - Marketing:
 - Ergänzungsbereich Marketing

9 **Gesamtnote/Fachnote**
 - 6/114

10 **Modulbeauftragte/r**
 - Area Corporate Development

11 **Sonstige Informationen**

Titel des Moduls
SM Elective Corporate Development I

Art des Moduls
- Schwerpunktmodul

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>180 h</td>
<td>6 LP</td>
<td></td>
<td></td>
<td>nur SoSe</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1253MSSIC 1</td>
<td>Lehrveranstaltungen</td>
<td>Kontakzeit</td>
<td>Selbststudium</td>
<td>geplante Gruppengröße</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Elective Corporate Developments I</td>
<td>60 h</td>
<td>120 h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Corporate Development.
... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
... erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.
... verwenden selbstständig Techniken des wissenschaftlichen Arbeitens und der guten wissenschaftlichen Praxis.

3 Inhalte des Moduls

Wechselnde Themen des Corporate Developments

4 Lehr- und Lernformen

Vorlesung
Übung

5 Modulvoraussetzungen

Keine

6 Form der Modulprüfung/Modulabschlussprüfung

Schriftliche Prüfung: KL (60)

7 Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen der Modulabschlussprüfung

8 Verwendung des Moduls (in anderen Studiengängen)

Master of Science Business Administration - Accounting and Taxation:
Schwerpunktbereich Accounting and Taxation
Master of Science Information Systems:
Ergänzungsbereich Information Systems
Master of Science Business Administration - Corporate Development:
Ergänzungsbereich Corporate Development
Master of Science Business Administration - Finance:
Ergänzungsbereich Finance
<table>
<thead>
<tr>
<th>Master of Science Business Administration - Marketing:</th>
<th>Ergänzungsbereich Marketing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Business Administration - Supply Chain Management:</td>
<td>Ergänzungsbereich Supply Chain Management</td>
</tr>
<tr>
<td>Master of Science International Management:</td>
<td>Ergänzungsbereich International Management</td>
</tr>
<tr>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:</td>
<td>Ergänzungsbereich Wirtschaftspädagogik</td>
</tr>
<tr>
<td>Master of Science Mathematik:</td>
<td>Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Master of Science Wirtschaftsmathematik:</td>
<td>Wirtschaftswissenschaften</td>
</tr>
</tbody>
</table>

9 Gesamtnote/Fachnote
6/114

10 Modulbeauftragte/r
Area Corporate Development

11 Sonstige Informationen

Titel des Moduls
SM Elective Corporate Development II

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Schwerpunktmodul</td>
<td>SM-ECorDev2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs- punkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1253MSSIC 2</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes 2. Semester</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 | Lehrveranstaltungen |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Sustainability & Strategy</td>
</tr>
<tr>
<td>b) Elective Corporate Developments II</td>
</tr>
</tbody>
</table>

2 | Kontaktzeit |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 30 h</td>
</tr>
<tr>
<td>b) 30 h</td>
</tr>
</tbody>
</table>

2 | Selbststudium |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 150 h</td>
</tr>
<tr>
<td>b) 150 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>geplante Gruppen- größe</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden...</td>
</tr>
<tr>
<td>... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Corporate Development.</td>
</tr>
<tr>
<td>... analysieren reale Fragestellungen und Herausforderungen im Bereich Corporate Development.</td>
</tr>
</tbody>
</table>
... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.
... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wechselnde Themen des Corporate Developments</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kombinierte Prüfung: RE, HA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Modulabschlussprüfung eines Kurses. Ein Kurs ist zu besuchen; die Prüfung bezieht sich auf den Inhalt eines Kurses.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Business Administration - Accounting and Taxation: Schwerpunktbereich Accounting and Taxation</td>
<td></td>
</tr>
<tr>
<td>Master of Science Information Systems: Ergänzungsbereich Information Systems</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Finance: Ergänzungsbereich Finance</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Supply Chain Management: Ergänzungsbereich Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science International Management: Ergänzungsbereich International Management</td>
<td></td>
</tr>
<tr>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs: Ergänzungsbereich Wirtschaftspädagogik</td>
<td></td>
</tr>
<tr>
<td>Master of Science Mathematik: Wirtschaftswissenschaften</td>
<td></td>
</tr>
<tr>
<td>Master of Science Wirtschaftsmathematik: Wirtschaftswissenschaften</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 9 | Gesamtnote/Fachnote |</p>
<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area Corporate Development</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
</tbody>
</table>

Titel des Moduls
SM Elective Corporate Development III

Art des Moduls
- Schwerpunktmodul

Kurztitel
SM-ECorDev3

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1253MSSIC 3</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>unregelmäßig</td>
<td>WiSe/SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elective Corporate Developments III</td>
<td>60 h</td>
<td>120 h</td>
<td></td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...
- verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Corporate Development.
- analysieren reale Fragestellungen und Herausforderungen im Bereich Corporate Development.
- bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
- begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
- diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.
- bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.
- entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.

Inhalte des Moduls
Wechselnde Themen des Corporate Developments

Lehr- und Lernformen
Vorlesung
Übung
5 Modulvoraussetzungen
Keine

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung: KL(60)

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Modulabschlussprüfung

8 Verwendung des Moduls (in anderen Studiengängen)
Master of Science Business Administration - Accounting and Taxation:
 Schwerpunktbereich Accounting and Taxation
Master of Science Information Systems:
 Ergänzungsbereich Information Systems
Master of Science Business Administration - Corporate Development:
 Ergänzungsbereich Corporate Development
Master of Science Business Administration - Finance:
 Ergänzungsbereich Finance
Master of Science Business Administration - Marketing:
 Ergänzungsbereich Marketing
Master of Science Business Administration - Supply Chain Management:
 Ergänzungsbereich Supply Chain Management
Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:
 Ergänzungsbereich Wirtschaftspädagogik
Master of Science Mathematik:
 Wirtschaftswissenschaften
Master of Science Wirtschaftsmathematik:
 Wirtschaftswissenschaften

9 Gesamtnote/Fachnote
6/114

10 Modulbeauftragte/r
Area Corporate Development

11 Sonstige Informationen

Ergänzungsbereich Finance:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Finance I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schwerpunktmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-Fin1</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>Work-load</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>Studiensemester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>Beginn des Angebots</td>
</tr>
<tr>
<td>Dauer</td>
<td></td>
</tr>
</tbody>
</table>
Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...

- verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Kapitalmarkttheorie.
- analysieren reale Fragestellungen und Herausforderungen im Bereich Kapitalmarkttheorie.
- bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
- diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat.

Inhalte des Moduls

- Investitionsentscheidungen unter Unsicherheit
- Portfoliotheorie
- Finanzwirtschaftliche Bewertungsmodelle
- Analyse und Bewertung von Forwards, Futures and Options

Lehr- und Lernformen

- Vorlesung
- Übung

Modulvoraussetzungen

Keine

Form der Modulprüfung/Modulabschlussprüfung

Schriftliche Prüfung: KL (60)

Voraussetzungen für die Vergabe von Leistungspunkten

Bestehen der Modulabschlussprüfung

Verwendung des Moduls (in anderen Studiengängen)

- Master of Science Business Administration - Accounting and Taxation: Schwerpunktbereich Accounting and Taxation
- Master of Science Information Systems: Ergänzungsbereich Information Systems
- Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development
- Master of Science Business Administration - Finance: Ergänzungsbereich Finance
- Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing
<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Finance II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schwerpunktmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-Fin2</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>1253MSFIN2</td>
</tr>
<tr>
<td>Work-load</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>jedes 2. Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td>Corporate Finance</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>60 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>120 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
<td></td>
</tr>
<tr>
<td>2 Ziele des Moduls und zu erwerbende Kompetenzen</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden...</td>
<td></td>
</tr>
<tr>
<td>... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Corporate Finance.</td>
<td></td>
</tr>
</tbody>
</table>
... analysieren reale Fragestellungen und Herausforderungen im Bereich Corporate Finance.
... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.

3 Inhalte des Moduls
- Finanzplanung
- Kapitalkosten
- Unternehmensbewertung
- Unternehmensrestrukturierung

4 Lehr- und Lernformen
- Vorlesung
- Übung

5 Modulvoraussetzungen
Keine

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung: KL (60)

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Modulabschlussprüfung

8 Verwendung des Moduls (in anderen Studiengängen)
- Master of Science Business Administration - Accounting and Taxation:
 - Schwerpunktbereich Accounting and Taxation
- Master of Science Information Systems:
 - Ergänzungsbereich Information Systems
- Master of Science Business Administration - Corporate Development:
 - Ergänzungsbereich Corporate Development
- Master of Science Business Administration - Finance:
 - Ergänzungsbereich Finance
- Master of Science Business Administration - Marketing:
 - Ergänzungsbereich Marketing
- Master of Science Business Administration - Supply Chain Management:
 - Ergänzungsbereich Supply Chain Management
- Master of Science International Management:
 - Ergänzungsbereich International Management
- Master of Science Economics:
 - Ergänzungsbereich Management & Social Sciences
- Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:
 - Ergänzungsbereich Wirtschaftspädagogik
- Master of Arts Regionalstudien China - Betriebswirtschaftslehre:
 - Ergänzungsbereich Business Administration
- Master of Science Mathematik:
 - Wirtschaftswissenschaften

168
Master of Science Wirtschaftsmathematik: Wirtschaftswissenschaften
Master of Science Geographie: Wahlpflichtfach Management & Social Sciences

Gesamtnote/Fachnote
6/114

Modulbeauftragte/r
Univ.-Prof. Dr. Dieter Hess

Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Finance III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schwerpunktmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-Fin3</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>1253MSFIN3</td>
</tr>
<tr>
<td>Work-load</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungs-punkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studien-semester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>jedes 2. Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
Insurance Economics
Kontaktzeit
60 h
Selbststudium
120 h
geplante Gruppengröße

Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden in den Bereichen Finance oder Versicherungen.
... analysieren reale Fragestellungen und Herausforderungen in den Bereichen Finance oder Versicherungen.
... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.

Inhalte des Moduls
• Theorie der Versicherungsnachfrage
• Produktionstheorie der Versicherung
<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: KL (60)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Modulabschlussprüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Business Administration - Accounting and Taxation:</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktbereich Accounting and Taxation</td>
<td></td>
</tr>
<tr>
<td>Master of Science Information Systems:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Information Systems</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Corporate Development:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Corporate Development</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Finance:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Finance</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Marketing:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Marketing</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Supply Chain Management:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science International Management:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich International Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science Gesundheitsökonomie:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Gesundheitsökonomie</td>
<td></td>
</tr>
<tr>
<td>Master of Science Economics:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Management & Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Wirtschaftspädagogik</td>
<td></td>
</tr>
<tr>
<td>Master of Arts Regionalstudien China - Betriebswirtschaftslehre:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Business Administration</td>
<td></td>
</tr>
<tr>
<td>Master of Science Mathematik:</td>
<td></td>
</tr>
<tr>
<td>Wirtschaftswissenschaften</td>
<td></td>
</tr>
<tr>
<td>Master of Science Wirtschaftsmathematik:</td>
<td></td>
</tr>
<tr>
<td>Wirtschaftswissenschaften</td>
<td></td>
</tr>
<tr>
<td>Master of Science Geographie:</td>
<td></td>
</tr>
<tr>
<td>Wahlpflichtfach Management & Social Sciences</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Gesamtnote/Fachnote</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>6/114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr. Heinrich R. Schradin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM Finance Advanced IV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Schwerpunktmodul</td>
<td>SM-AdvFin4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1253MSFIN 4</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes 2. Semester</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insurance Economics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 h</td>
<td>120 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden...</td>
<td></td>
</tr>
<tr>
<td>... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Value-Based Management in Versicherungsunternehmen.</td>
<td></td>
</tr>
<tr>
<td>... analysieren reale Fragestellungen und Herausforderungen im Bereich Value-Based Management in Versicherungsunternehmen.</td>
<td></td>
</tr>
<tr>
<td>... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.</td>
<td></td>
</tr>
<tr>
<td>... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Value-Based Management in Insurance - Theory and Practice</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Einführung in das Versicherungsmanagement | Versicherungsrisiko und Produktionstechnik | Risikomodellierung und Risikomessung | Risikomanagement und Shareholder Wealth | Risikobasierte Kapitalallokation | Entscheidungsfindung im Rahmen der wertorientierten Steuerung | Trends und Herausforderungen in der Versicherungsbranche |</p>
<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: KL (60)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Modulabschlussprüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Business Administration - Accounting and Taxation:</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktbereich Accounting and Taxation</td>
<td></td>
</tr>
<tr>
<td>Master of Science Information Systems:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Information Systems</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Corporate Development:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Corporate Development</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Finance:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Finance</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Marketing:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Marketing</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Supply Chain Management:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science International Management:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich International Management</td>
<td></td>
</tr>
<tr>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Wirtschaftspädagogik</td>
<td></td>
</tr>
<tr>
<td>Master of Science Mathematik:</td>
<td></td>
</tr>
<tr>
<td>Wirtschaftswissenschaften</td>
<td></td>
</tr>
<tr>
<td>Master of Science Wirtschaftsmathematik:</td>
<td></td>
</tr>
<tr>
<td>Wirtschaftswissenschaften</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/114</td>
<td></td>
</tr>
</tbody>
</table>

| 10 | Modulbeauftragte/r |
Titel des Moduls
SM Brand Management

Art des Moduls
- Schwerpunktmodul

Kennnummer
- 1266MSBM G1

Workload
- 180 h

Leistungspunkte
- 6 LP

Studiensemester
- ab dem ersten Semester

Häufigkeit des Angebots
- jedes 2. Semester

Beginn des Angebots
- nur SoSe

Dauer
- 1 Semester

1 Lehrveranstaltungen

Kontaktzeit
- Brand Management
- 45 h

Selbststudium
- 135 h

Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...
- verstehen weiterführende, spezialisierte Theorien, Konzepte und Methoden des Marketings am Beispiel des Markenmanagements.
- bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien, Konzepte und Methoden des Marketings am Beispiel des Markenmanagements.
- handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.

Inhalte des Moduls

Lehr- und Lernformen

- Vorlesung
- Übung
| 5 | **Modulvoraussetzungen**
Empfehlung: Grundkenntnisse in Marketing und multivariaten Methoden (z.B. Regressionsanalyse, Varianzanalyse) |
| 6 | **Form der Modulprüfung/Modulabschlussprüfung**
Schriftliche Prüfung: KL (60) |
| 7 | **Voraussetzungen für die Vergabe von Leistungspunkten**
Bestehen der Modulabschlussprüfung |
| 8 | **Verwendung des Moduls (in anderen Studiengängen)**
Master of Science Business Administration - Accounting and Taxation:
 Schwerpunktbereich Accounting and Taxation
Master of Science Information Systems:
 Ergänzungsbereich Information Systems
Master of Science Business Administration - Corporate Development:
 Ergänzungsbereich Corporate Development
Master of Science Business Administration - Finance:
 Ergänzungsbereich Finance
Master of Science Business Administration - Marketing:
 Ergänzungsbereich Marketing
Master of Science Business Administration - Supply Chain Management:
 Ergänzungsbereich Supply Chain Management
Master of Science Sociology - Social Research:
 Ergänzungsbereich Sociology: Social Research
Master of Science Sociology - Social and Economic Psychology:
 Ergänzungsbereich Sociology: Social and Economic Psychology
Master of Science International Management:
 Ergänzungsbereich International Management
Master of Science Economics:
 Ergänzungsbereich Management & Social Sciences
Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:
 Ergänzungsbereich Wirtschaftspädagogik
Master of Science Medienwissenschaft:
 Ergänzungsbereich Medienmanagement und Medienökonomie
Master of Arts Regionalstudien China - Betriebswirtschaftslehre:
 Ergänzungsbereich Business Administration
Master of Science Mathematik:
 Wirtschaftswissenschaften
Master of Science Wirtschaftsmathematik:
 Wirtschaftswissenschaften
Master of Science Geographie:
 Wahlpflichtfach Management & Social Sciences |
| 9 | **Gesamtnote/Fachnote**
6/114 |
| 10 | **Modulbeauftragte/r** |
11 Sonstige Informationen

Titel des Moduls
SM Customer Management

Art des Moduls
- Schwerpunktmodul

Kurztitel
SM-CustMan

Kennnummer
1266MSCM G1

Workload
180 h

Leistungspunkte
6 LP

Studiensemester
ab dem ersten Semester

Häufigkeit des Angebots
jedes 2. Semester

Beginn des Angebots
nur WiSe

Dauer
1 Semester

1 Lehrveranstaltungen
Customer Management

Kontaktzeit
45 h

Selbststudium
135 h

geplante Gruppengröße

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Kundenmanagement.
... analysieren reale Fragestellungen und Herausforderungen im Bereich Kundenmanagement.
... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.

3 Inhalte des Moduls
<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlung: Grundkenntnisse in Marketing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: KL (60)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Modulabschlussprüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Business Administration - Accounting and Taxation: Schwerpunktbereich Accounting and Taxation</td>
<td></td>
</tr>
<tr>
<td>Master of Science Information Systems: Ergänzungsbereich Information Systems</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Finance: Ergänzungsbereich Finance</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Supply Chain Management: Ergänzungsbereich Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science Sociology - Social Research: Ergänzungsbereich Sociology: Social Research</td>
<td></td>
</tr>
<tr>
<td>Master of Science International Management: Ergänzungsbereich International Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science Economics: Ergänzungsbereich Management & Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs: Ergänzungsbereich Wirtschaftspädagogik</td>
<td></td>
</tr>
<tr>
<td>Master of Science Medienwissenschaft: Ergänzungsbereich Medienmanagement und Medienökonomie</td>
<td></td>
</tr>
<tr>
<td>Master of Arts Regionalstudien China - Betriebswirtschaftslehre: Ergänzungsbereich Business Administration</td>
<td></td>
</tr>
<tr>
<td>Master of Science Mathematik: Wirtschaftswissenschaften</td>
<td></td>
</tr>
<tr>
<td>Master of Science Wirtschaftsmathematik: Wirtschaftswissenschaften</td>
<td></td>
</tr>
<tr>
<td>Master of Science Geographie: Wahlpflichtfach Management & Social Sciences</td>
<td></td>
</tr>
</tbody>
</table>

| 9 | Gesamtnote/Fachnote |
Titel des Moduls
SM Marketing Performance Management

Art des Moduls
○ Schwerpunktmodul

Kurztitel
SM-MarkPerfMan

Kennnummer
1266MSMP F1

Workload
180 h

Leistungspunkte
6 LP

Studiensemester
ab dem ersten Semester

Häufigkeit des Angebots
jedes 2. Semester

Beginn des Angebots
nur WiSe

Dauer
1 Semester

1 Lehrveranstaltungen
Marketing Performance Management

Kontaktzeit
45 h

Selbststudium
135 h

geplante Gruppengröße

2 Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...
... analysieren reale Fragestellungen und Herausforderungen im Bereich Kundenmanagement.
... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.

3 Inhalte des Moduls

<table>
<thead>
<tr>
<th></th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
<tr>
<td></td>
<td>Modulvoraussetzungen</td>
</tr>
<tr>
<td></td>
<td>Empfehlung: Grundkenntnisse in Marketing und multivarianten Methoden</td>
</tr>
<tr>
<td></td>
<td>Form der Modulprüfung/Modulabschlussprüfung</td>
</tr>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (60)</td>
</tr>
<tr>
<td></td>
<td>Voraussetzungen für die Vergabe von Leistungspunkten</td>
</tr>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

8. **Verwendung des Moduls (in anderen Studiengängen)**

- Master of Science Business Administration - Accounting and Taxation:
 - Schwerpunktbereich Accounting and Taxation
- Master of Science Information Systems:
 - Ergänzungsbereich Information Systems
- Master of Science Business Administration - Corporate Development:
 - Ergänzungsbereich Corporate Development
- Master of Science Business Administration - Finance:
 - Ergänzungsbereich Finance
- Master of Science Business Administration - Marketing:
 - Ergänzungsbereich Marketing
- Master of Science Business Administration - Supply Chain Management:
 - Ergänzungsbereich Supply Chain Management
- Master of Science Sociology - Social Research:
 - Ergänzungsbereich Sociology: Social Research
- Master of Science Sociology - Social and Economic Psychology:
 - Ergänzungsbereich Sociology: Social and Economic Psychology
- Master of Science International Management:
 - Ergänzungsbereich International Management
- Master of Science Economics:
 - Ergänzungsbereich Management & Social Sciences
- Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:
 - Ergänzungsbereich Wirtschaftspädagogik
- Master of Science Medienwissenschaft:
 - Ergänzungsbereich Medienmanagement und Medienökonomie
- Master of Arts Regionalstudien China - Betriebswirtschaftslehre:
 - Ergänzungsbereich Business Administration
- Master of Science Mathematik:
 - Wirtschaftswissenschaften
- Master of Science Wirtschaftsmathematik:
 - Wirtschaftswissenschaften
- Master of Science Geographie:
 - Wahlpflichtfach Management & Social Sciences

9. **Gesamtnote/Fachnote**
<table>
<thead>
<tr>
<th>6/114</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

| Titel des Moduls |
| SM Digital Strategy and Management |

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Schwerpunktmodul</td>
<td>SM-DigStraMan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1266MSDS M1</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes 2. Semester</td>
<td>nur SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Strategy and Marketing</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td></td>
<td>45 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden...</td>
<td></td>
</tr>
<tr>
<td>... verstehen ökonomische und strategische Rahmenwerke, die Unternehmen, Wirtschaftsmodelle und taktische Entscheidungen erklären.</td>
<td></td>
</tr>
<tr>
<td>... analysieren aktuelle Fragestellungen und Herausforderungen der aus digitalen Technologien resultierenden Transformation von Wirtschaft und Gesellschaft.</td>
<td></td>
</tr>
<tr>
<td>... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.</td>
<td></td>
</tr>
<tr>
<td>... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.</td>
<td></td>
</tr>
<tr>
<td>... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethnischer Kriterien.</td>
<td></td>
</tr>
<tr>
<td>... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.</td>
<td></td>
</tr>
</tbody>
</table>

| 3 | Inhalte des Moduls |
Das Aufkommen des Internets und mobiler Endgeräte sowie die Fähigkeit zur Automatisierung von Aufgaben und die Fülle von Daten verändern Gesellschaft und Unternehmen. Dieses Modul bietet den Studierenden ein breites Spektrum an Themen und Fragestellungen im Zusammenhang mit dieser “digitalen” Transformation. Das Modul besteht sowohl aus konzeptionellen als auch angewandten Methoden und Rahmenwerken zum Verständnis von Geschäftsmodellen und der Organisation von Industrien. Das Modul zielt darauf ab, sowohl die Angebotsseite (Infrastruktur, Betriebe, etc.) als auch die Nachfrageseite (Kund*innen, Marketing, etc.) abzudecken. Von den Studierenden wird erwartet, dass sie ihr eigenes Wissen teilen und aktuelle Ereignisse (z.B. neue Unternehmen, aktuelle Nachrichten, Börsengänge, etc.) nutzen, um die erlernten Konzepte anzuwenden.

4 Lehr- und Lernformen
- Vorlesung
- Übung

5 Modulvoraussetzungen
Empfehlung: Grundkenntnisse in Marketing und Wirtschaft

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung: KL (60)

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Modulabschlussprüfung

8 Verwendung des Moduls (in anderen Studiengängen)
- Master of Science Business Administration - Accounting and Taxation: Schwerpunktbereich Accounting and Taxation
- Master of Science Information Systems: Ergänzungsbereich Information Systems
- Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development
- Master of Science Business Administration - Finance: Ergänzungsbereich Finance
- Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing
- Master of Science Business Administration - Supply Chain Management: Ergänzungsbereich Supply Chain Management
- Master of Science Sociology - Social Research: Ergänzungsbereich Sociology: Social Research
- Master of Science International Management: Ergänzungsbereich International Management
- Master of Science Economics: Ergänzungsbereich Management & Social Sciences
- Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs: Ergänzungsbereich Wirtschaftspädagogik
- Master of Science Medienwissenschaft:
Ergänzungsbereich Medienmanagement und Medienökonomie
Master of Arts Regionalstudien China - Betriebswirtschaftslehre:
 Ergänzungsbereich Business Administration
Master of Science Mathematik:
 Wirtschaftswissenschaften
Master of Science Wirtschaftsmathematik:
 Wirtschaftswissenschaften
Master of Science Geographie:
 Wahlpflichtfach Management & Social Sciences

9 Gesamtnote/Fachnote
 6/114

10 Modulbeauftragte/r
 Univ.-Prof. Dr. Hernán Bruno

11 Sonstige Informationen

Ergänzungsbereich Supply Chain Management:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Supply Chain Analytics I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schwerpunktmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-SCAnal</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>1271MBSC</td>
</tr>
<tr>
<td>A1</td>
<td>180 h</td>
</tr>
<tr>
<td>Workload</td>
<td>6 LP</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>jedes 2. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>nur WiSe</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>1 Semeseter</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semeseter</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 Predictive Analytics
 Kontaktzeit 45 h
 Selbststudium 135 h
 geplante Gruppengröße

2 Ziele des Moduls und zu erwerbende Kompetenzen
 Die Studierenden...
 ... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Data Science.
... erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
... kommunizieren kontinuierlich und zielgerichtet in heterogenen Teams.
... lösen teaminterne Konflikte und Zieldivergenzen selbstständig.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... präsentieren wissenschaftliche Ergebnisse adressatengerecht.
... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.
... verwenden selbstständig Techniken des wissenschaftlichen Arbeitens und der guten wissenschaftlichen Praxis.

3 Inhalte des Moduls
- Einführung in Datenanalyse/Data Science
- Einführung in Programmiersprache Python
- Verfahren der Bedarfsprognose

4 Lehr- und Lernformen
Vorlesung
Übung

5 Modulvoraussetzungen
keine

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung: PO

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Modulabschlussprüfung

8 Verwendung des Moduls (in anderen Studiengängen)
Master of Science Business Administration - Accounting and Taxation:
 Schwerpunktbereich Accounting and Taxation
Master of Science Information Systems:
 Ergänzungsbereich Information Systems
Master of Science Business Administration - Corporate Development:
 Ergänzungsbereich Corporate Development
Master of Science Business Administration - Finance:
 Ergänzungsbereich Finance
Master of Science Business Administration - Marketing:
 Ergänzungsbereich Marketing
Master of Science Business Administration - Supply Chain Management:
 Ergänzungsbereich Supply Chain Management
Master of Science Sociology - Social Research:
 Ergänzungsbereich Sociology: Social Research
Master of Science Sociology - Social and Economic Psychology:
 Ergänzungsbereich Sociology: Social and Economic Psychology
Master of Science International Management:
 Ergänzungsbereich International Management
Master of Science Economics:
Titel des Moduls
SM Supply Chain Analytics II

Art des Moduls
- Schwerpunktmodul

Kurztitel
SM-SCAnAll

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs- punkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1271MBSC A2</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes 2. Semester</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
Predictive Analytics
Kontaktzeit 45 h
Selbststudium 135 h
geplante Gruppen-größe

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Data Science.
... erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
... kommunizieren kontinuierlich und zielgerichtet in heterogenen Teams.
... lösen teaminterne Konflikte und Zieldivergenzen selbstständig.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... präsentieren wissenschaftliche Ergebnisse adressatengerecht.
... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.
... verwenden selbstständig Techniken des wissenschaftlichen Arbeitens und der guten wissenschaftlichen Praxis.

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Einführung in analytische Modellierung</td>
</tr>
<tr>
<td></td>
<td>• Einführung in Optimierungsverfahren</td>
</tr>
<tr>
<td></td>
<td>• Optimierung von Fallstudien in Python</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: PO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Business Administration - Accounting and Taxation: Schwerpunktbereich Accounting and Taxation</td>
</tr>
<tr>
<td></td>
<td>Master of Science Information Systems: Ergänzungsbereich Information Systems</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Finance: Ergänzungsbereich Finance</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Supply Chain Management: Ergänzungsbereich Supply Chain Management</td>
</tr>
<tr>
<td></td>
<td>Master of Science Sociology - Social Research: Ergänzungsbereich Sociology: Social Research</td>
</tr>
<tr>
<td></td>
<td>Master of Science International Management: Ergänzungsbereich International Management</td>
</tr>
<tr>
<td></td>
<td>Master of Science Economics: Ergänzungsbereich Management & Social Sciences</td>
</tr>
<tr>
<td></td>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs: Ergänzungsbereich Wirtschaftspädagogik</td>
</tr>
</tbody>
</table>
Master of Science Medienwissenschaft:
 Ergänzungsbereich Medienmanagement und Medienökonomie
Master of Arts Regionalstudien China - Betriebswirtschaftslehre:
 Ergänzungsbereich Business Administration
Master of Science Mathematik:
 Wirtschaftswissenschaften
Master of Science Wirtschaftsmathematik:
 Wirtschaftswissenschaften
Master of Science Geographie:
 Wahlpflichtfach Management & Social Sciences

9 Gesamtnote/Fachnote
 6/114

10 Modulbeauftragte/r
 Univ.-Prof. Dr. Andreas Fügener
 Area Supply Chain Management

11 Sonstige Informationen

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM Supply Chain Operations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Schwerpunktmodul</td>
<td>SM-SMOper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1271MSSO P1</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes 2. Semester</td>
<td>nur SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Chain Operations</td>
<td>45 h</td>
<td>135 h</td>
<td></td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
 ... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Data Science.
 ... erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
 ... kommunizieren kontinuierlich und zielgerichtet in heterogenen Teams.
 ... lösen teaminterne Konflikte und Zieldivergenzen selbstständig.
 ... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... präsentieren wissenschaftliche Ergebnisse adressatengerecht.
... entwickeln für reale Probleme und Herausforderungen Arbeitsprozesse.
... verwenden selbstständig Techniken des wissenschaftlichen Arbeitens und der guten wissenschaftlichen Praxis.

3 Inhalte des Moduls
- Bestandsmanagement
- Vertragsgestaltung
- Kapazitäts- und Revenue Management
- Supply Chain Management

4 Lehr- und Lernformen
- Vorlesung
- Übung

5 Modulvoraussetzungen
Empfehlung: Das BM Supply Chain Analytics I sollte absolviert worden sein.

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung: PO

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Modulabschlussprüfung

8 Verwendung des Moduls (in anderen Studiengängen)
- Master of Science Business Administration - Accounting and Taxation:
 Schwerpunktbereich Accounting and Taxation
- Master of Science Information Systems:
 Ergänzungsbereich Information Systems
- Master of Science Business Administration - Corporate Development:
 Ergänzungsbereich Corporate Development
- Master of Science Business Administration - Finance:
 Ergänzungsbereich Finance
- Master of Science Business Administration - Marketing:
 Ergänzungsbereich Marketing
- Master of Science Business Administration - Supply Chain Management:
 Ergänzungsbereich Supply Chain Management
- Master of Science Sociology - Social Research:
 Ergänzungsbereich Sociology: Social Research
- Master of Science Sociology - Social and Economic Psychology:
 Ergänzungsbereich Sociology: Social and Economic Psychology
- Master of Science International Management:
 Ergänzungsbereich International Management
- Master of Science Economics:
 Ergänzungsbereich Management & Social Sciences
- Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs:
 Ergänzungsbereich Wirtschaftspädagogik
- Master of Science Medienwissenschaft:
 Ergänzungsbereich Medienmanagement und Medienökonomie
| Master of Arts Regionalstudien China - Betriebswirtschaftslehre: Ergänzungsbereich Business Administration |
| Master of Science Mathematik: Wirtschaftswissenschaften |
| Master of Science Wirtschaftsmathematik: Wirtschaftswissenschaften |
| Master of Science Geographie: Wahlpflichtfach Management & Social Sciences |

9 | Gesamtnote/Fachnote |
| 6/114 |

10 | Modulbeauftragte/r |
| Univ.-Prof. Dr. Ulrich W. Thonemann |
| Area Supply Chain Management |

11 | Sonstige Informationen |

| Titel des Moduls |
| SM Supply Chain Strategy |

| Art des Moduls |
| Schwerpunktmodul |

| Kennnummer |
| 1271MSSS |
| Y1 |

| Workload |
| 180 h |

| Leistungspunkte |
| 6 LP |

| Studiensemester |
| ab dem ersten Semester |

| Häufigkeit des Angebots |
| jedes 2. Semester |

| Beginn des Angebots |
| nur WiSe |

| Dauer |
| 1 Semester |

| Lehrveranstaltungen |
| Supply Chain Strategy |

| Kontaktzeit |
| 45 h |

| Selbststudium |
| 135 h |

| geplante Gruppengröße |
| |

| Ziele des Moduls und zu erwerbende Kompetenzen |
| Die Studierenden... |
| ... verstehen weiterführende, spezialisierte Theorien / Methoden für die Formulierung und Implementierung von Strategien im Kontext von Supply Chain und Operations Management. |
| ... analysieren reale Fragestellungen und Herausforderungen in Supply Chains. |
| ... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden. |
| ... kommunizieren kontinuierlich und zielgerichtet in heterogenen Teams. |
| ... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlosungen. |
... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Strategieentwicklung</td>
<td></td>
</tr>
<tr>
<td>• Produktentwicklung</td>
<td></td>
</tr>
<tr>
<td>• Prozessdesign</td>
<td></td>
</tr>
<tr>
<td>• Simulation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: PO</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Modulabschlussprüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Business Administration - Accounting and Taxation: Schwerpunktbereich Accounting and Taxation</td>
<td></td>
</tr>
<tr>
<td>Master of Science Information Systems: Ergänzungsbereich Information Systems</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Finance: Ergänzungsbereich Finance</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Supply Chain Management: Ergänzungsbereich Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science Economics: Ergänzungsbereich Management & Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs: Ergänzungsbereich Wirtschaftspädagogik</td>
<td></td>
</tr>
<tr>
<td>Master of Science Medienwissenschaft: Ergänzungsbereich Medienmanagement und Medienökonomie</td>
<td></td>
</tr>
<tr>
<td>Master of Arts Regionalstudien China - Betriebswirtschaftslehre: Ergänzungsbereich Business Administration</td>
<td></td>
</tr>
<tr>
<td>Master of Science Mathematik: Wirtschaftswissenschaften</td>
<td></td>
</tr>
<tr>
<td>Master of Science Wirtschaftsmathematik: Wirtschaftswissenschaften</td>
<td></td>
</tr>
<tr>
<td>Titel des Moduls</td>
<td>SM Supply Chain Planning</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Art des Moduls</td>
<td>o Schwerpunktmodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-SCPlan</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>1271MSSPL1</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>jedes 2. Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur SoSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td>a) Project Management</td>
</tr>
<tr>
<td></td>
<td>b) Production Management</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>a) 45h</td>
</tr>
<tr>
<td></td>
<td>b) 45h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>a) 135h</td>
</tr>
<tr>
<td></td>
<td>b) 135h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
<td></td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden im Supply Chain Planning.
... analysieren reale Fragestellungen und Herausforderungen im Supply Chain Planning.
... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
... kommunizieren kontinuierlich und zielgerichtet in heterogenen Teams.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.

3 Inhalte des Moduls
Vertiefung ausgewählter Themengebiete des Supply Chain Managements:

a) Project Management:
• Projektdefinition und Projektbedingungen
• Projektrisikoanalyse und Risikomanagement
• Ressourcenverteilung und Budgetierung
• Projektplanung
• Projektüberwachung
• Projektportfoliomanagement
• Management von menschlichem Verhalten in Projekten

b) Production Planning:
• Supply Chain Design
• Nachfrageprognose
• Programmplanung
• Losgrößen- und Reihenfolgeplanung
• Ablaufplanung
• Bestandsmanagement

4 Lehr- und Lernformen
Vorlesung
Übung

5 Modulvoraussetzungen
Empfehlung: Das BM Supply Chain Analytics I und II sollte absolviert worden sein.

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung: PO

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der schriftlichen Prüfung eines Kurses. Ein Kurs ist zu besuchen; die schriftliche Prüfung bezieht sich auf den Inhalt eines Kurses.

8 Verwendung des Moduls (in anderen Studiengängen)
Master of Science Business Administration - Accounting and Taxation:
 Schwerpunktbereich Accounting and Taxation
Master of Science Information Systems:
 Ergänzungsbereich Information Systems
Master of Science Business Administration - Corporate Development:
 Ergänzungsbereich Corporate Development
Master of Science Business Administration - Finance:
 Ergänzungsbereich Finance
Master of Science Business Administration - Marketing:
 Ergänzungsbereich Marketing
Master of Science Business Administration - Supply Chain Management:
 Ergänzungsbereich Supply Chain Management
Master of Science Economics:
 Ergänzungsbereich Management & Social Sciences
<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Selected Issues in Behavioural Supply Chain Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Kurztitel</td>
</tr>
<tr>
<td>o Schwerpunktmodul</td>
<td>SM-SIBSCM</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>Workload</td>
</tr>
<tr>
<td>1271MSIBS 1</td>
<td>180 h</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Leer</td>
</tr>
<tr>
<td></td>
<td>veranstaltungen</td>
</tr>
<tr>
<td></td>
<td>Behavioural Supply Chain Management</td>
</tr>
<tr>
<td>2</td>
<td>Ziele des Moduls und zu erwerbende Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden...</td>
</tr>
<tr>
<td></td>
<td>... verstehen weiterführende, spezialisierte Theorien / Methoden im Behavioural Operations Management.</td>
</tr>
<tr>
<td></td>
<td>... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.</td>
</tr>
</tbody>
</table>
... erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
... konzipieren selbstständig ein Forschungsdesign zu einer Fragestellung.
... kommunizieren kontinuierlich und zielgerichtet in heterogenen Teams.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... präsentieren wissenschaftliche Ergebnisse adressatengerecht.
... verwenden selbstständig Techniken des wissenschaftlichen Arbeitens und der guten wissenschaftlichen Praxis.

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Verhaltensbedingte Entscheidungsfindung</td>
<td></td>
</tr>
<tr>
<td>• Verhaltensmanagement</td>
<td></td>
</tr>
<tr>
<td>• Entscheidungs-Heuristik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlung: Das BM Supply Chain Analytics I und II sollte absolviert worden sein.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: PO</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der schriftlichen Prüfung eines Kurses. Ein Kurs ist zu besuchen; die schriftliche Prüfung bezieht sich auf den Inhalt eines Kurses.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Business Administration - Accounting and Taxation: Schwerpunktbereich Accounting and Taxation</td>
<td></td>
</tr>
<tr>
<td>Master of Science Information Systems: Ergänzungsbereich Information Systems</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Finance: Ergänzungsbereich Finance</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Supply Chain Management: Ergänzungsbereich Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science Economics: Ergänzungsbereich Management & Social Sciences</td>
<td></td>
</tr>
<tr>
<td>Master of Education Wirtschaftspädagogik/Lehramt an Berufskollegs: Ergänzungsbereich Wirtschaftspädagogik</td>
<td></td>
</tr>
<tr>
<td>Master of Science Medienwissenschaft: Ergänzungsbereich Medienmanagement und Medienökonomie</td>
<td></td>
</tr>
<tr>
<td>Master of Arts Regionalstudien China - Betriebswirtschaftslehre:</td>
<td></td>
</tr>
</tbody>
</table>
A.4 Volkswirtschaftslehre

Die Studien im Anwendungsfeld Volkswirtschaftslehre bestehen aus einem Wahlpflichtbereich im Umfang von 24 LP. Die zur Wahl stehenden Module haben hierbei einen Umfang von 6 LP.

Es folgen die Modulbeschreibungen der angebotenen Module:

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM Microeconomics</td>
<td>Basismodul</td>
<td>BM-Micro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs- punkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1289MBMIC</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>jedes 2. Semester</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppen-größe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Microeconomics</td>
<td>60 h</td>
<td>120 h</td>
<td>geplante Gruppen-größe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden...</td>
</tr>
</tbody>
</table>
| | ... verstehen weiterführende, spezialisierte Theorien / Methoden der Mikroökonomie.
... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.

3 Inhalte des Moduls

4 Lehr- und Lernformen
Vorlesung
Übung

5 Modulvoraussetzungen
keine

6 Form der Modulprüfung/Modulabschlussprüfung
Schriftliche Prüfung: KL (60)

7 Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Modulabschlussprüfung

8 Verwendung des Moduls (in anderen Studiengängen)
Master of Science Economics:
 Basisbereich Economics
Master of Arts Regionalstudien Ost- und Mitteleuropa - Volkswirtschaftslehre:
 Ergänzungsbereich Volkwirtschaftslehre
Master of Arts Regionalstudien Lateinamerika - Volkswirtschaftslehre:
 Ergänzungsbereich Economics
Master of Arts Regionalstudien China - Betriebswirtschaftslehre:
 Ergänzungsbereich Volkwirtschaftslehre
Master of Science Mathematik:
 Economics
Master of Science Wirtschaftsmathematik:
 Economics
Master of Science Geographie:
 Wahlpflichtfach Management & Social Sciences

9 Gesamtnote/Fachnote
6/114

10 Modulbeauftragte/r
Univ.-Prof. Dr. Christoph Schottmüller
Titel des Moduls
BM Macroeconomics

Art des Moduls
- O Basismodul

Kurztitel
BM-Macro

Kennnummer
1289MBMA C1

Workload
Leistungs punkte
Studien semester
Häufigkeit des Angebots
Beginn des Angebots
Dauer

180 h
6 LP
ab dem ersten Semester
jedes 2. Semester
nur WiSe
1 Semester

1 Lehrveranstaltungen
Macroeconomics

Kontaktzeit
Selbststudium
geplante Gruppengröße

60 h
120 h

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden.
... analysieren reale Fragestellungen und Herausforderungen.
... präsentieren wissenschaftliche Ergebnisse adressatengerecht.
... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.

3 Inhalte des Moduls
Der Fokus des Moduls liegt auf makroökonomischen Theorien und Themen. Im ersten Teil werden die wichtigsten Determinanten von Wirtschaftswachstum und internationaler Einkommensunterschiede behandelt, auf Basis moderner Wachstumstheorie. Im zweiten Teil werden kurzfristige ökonomischer Schwan kungen und Stabilisierungspolitik behandelt, auf Basis der Theorie realer Konjunkturzyklen und Neukeysanischer Modelle. In beiden Teilen wird gefragt, inwieweit Marktergebnisse nachhaltig sind, ob sie aus gesellschaftlicher Perspektive optimal sind, und ob Wirtschaftspolitik helfen kann, gesellschaftlich gewünschte Ergebnisse zu erreichen. Das Modul gibt auch eine Einführung in Methoden der dynamischen Optimierung und Simulation makroökonomischer Modelle.

4 Lehr- und Lernformen
Vorlesung
Übung

5 Modulvoraussetzungen
| 6 | **Form der Modulprüfung/Modulabschlussprüfung**
Schriftliche Prüfung: KL (90) |
|---|---|
| 7 | **Voraussetzungen für die Vergabe von Leistungspunkten**
Bestehen der Modulabschlussprüfung |
| 8 | **Verwendung des Moduls (in anderen Studiengängen)**
Master of Science Economics:
 Basisbereich Economics
Master of Science Business Administration - Accounting and Taxation:
 Ergänzungsbereich Accounting and Taxation
Master of Science Information Systems:
 Ergänzungsbereich Information Systems
Master of Science Business Administration - Corporate Development:
 Ergänzungsbereich Corporate Development
Master of Science Business Administration - Finance:
 Ergänzungsbereich Finance
Master of Science Business Administration - Marketing:
 Ergänzungsbereich Marketing
Master of Science Business Administration - Supply Chain Management:
 Ergänzungsbereich Supply Chain Management
Master of Arts Politikwissenschaft:
 Ergänzungsbereich Politikwissenschaft
Master of Science Sociology: Social Research:
 Ergänzungsbereich Sociology: Social Research
Master of Science Sociology: Social and Economic Psychology:
 Ergänzungsbereich Sociology: Social and Economic Psychology
Master of Science International Management:
 Ergänzungsbereich International Management
Master of Arts Regionalstudien Ost- und Mitteleuropa - Volkswirtschaftslehre:
 Ergänzungsbereich Volkswirtschaftslehre
Master of Arts Regionalstudien Lateinamerika - Volkswirtschaftslehre:
 Ergänzungsbereich Economics
Master of Science Mathematik:
 Economics
Master of Science Wirtschaftsmathematik:
 Economics
Master of Science Geographie:
 Wahlpflichtfach Management & Social Sciences |
| 9 | **Gesamtnote/Fachnote**
6/114 |
<p>| 10 | Modulbeauftragte/r |</p>
<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Markets and Economic Policy I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Kurztitel</td>
</tr>
<tr>
<td>o Schwerpunktmodul</td>
<td>SM-MarkEP1</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>Leistungspunkte</td>
</tr>
<tr>
<td>1302MSME P1</td>
<td>6 LP</td>
</tr>
<tr>
<td>Leerload</td>
<td>180 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>jedes 2. Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>nur SoSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
<td>Kontaktzeit</td>
</tr>
<tr>
<td>Growth, Inequality and Structural Change</td>
<td>45 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>135 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
<td></td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden.
... analysieren reale Fragestellungen und Herausforderungen.
... präsentieren wissenschaftliche Ergebnisse adressatengerecht.
... handeln verantwortungsvoll unter Beachtung ökologischer, sozialer und ethischer Kriterien.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.

3 Inhalte des Moduls
- Neoklassisches Wachstum
- Tempo und Richtung des technischen Wandels
- Automatisierung, Arbeit und Freizeit
- Menschen, Roboter und künstliche Intelligenz
- Sektoraler Wandel (Deindustrialisierung, Dienstleistungen, Immobilien, Aufstieg des Staates)
- Technischer Wandel und Ungleichheit
- Die Wohlstandsgesellschaft und ihre wirtschaftlichen Probleme

4 Lehr- und Lernformen
Vorlesung
Übung

5 Modulvoraussetzungen
<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (90)</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Vergabe von Leistungspunkten</td>
</tr>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
<tr>
<td>8</td>
<td>Verwendung des Moduls (in anderen Studiengängen)</td>
</tr>
</tbody>
</table>
| | Master of Science Economics:
| | Schwerpunktbereich Economics
| | Ergänzungsbereich Economics
| | Master of Science Business Administration - Accounting and Taxation:
| | Ergänzungsbereich Accounting and Taxation
| | Master of Science Information Systems:
| | Ergänzungsbereich Information Systems
| | Master of Science Business Administration - Corporate Development:
| | Ergänzungsbereich Corporate Development
| | Master of Science Business Administration - Finance:
| | Ergänzungsbereich Finance
| | Master of Science Business Administration - Marketing:
| | Ergänzungsbereich Marketing
| | Master of Science Business Administration - Supply Chain Management:
| | Ergänzungsbereich Supply Chain Management
| | Master of Science Economic Research:
| | Ergänzungsbereich: Economic Research
| | Master of Science International Management:
| | Ergänzungsbereich International Management
| | Master of Arts Regionalstudien Ost- und Mitteleuropa - Volkswirtschaftslehre:
| | Ergänzungsbereich Volkswirtschaftslehre
| | Master of Arts Regionalstudien Lateinamerika - Volkswirtschaftslehre:
| | Ergänzungsbereich Economics
| | Master of Arts Regionalstudien China - Volkswirtschaftslehre:
| | Ergänzungsbereich Volkswirtschaftslehre
| | Master of Science Mathematik:
| | Economics
| | Master of Science Wirtschaftsmathematik:
| | Economics
| | Master of Science Geographie:
<p>| | Wahlpflichtfach Management & Social Sciences |
| 9 | Gesamtnote/Fachnote |
| | 6/114 |
| 10 | Modulbeauftragte/r |
| | Univ.-Prof. Dr. Peter Funk |
| 11 | Sonstige Informationen |</p>
<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Markets and Economic Policy II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schwerpunktsmodul</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>1302MSME P2</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>WiSe/SoS</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Money and Financial Markets</td>
</tr>
<tr>
<td>Kontaktzeit</td>
<td>45 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>135 h</td>
</tr>
<tr>
<td>geplante Gruppengröße</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden...</td>
</tr>
<tr>
<td>... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Geldpolitik, -theorie und Finanzmärkte.</td>
</tr>
<tr>
<td>... analysieren reale Fragestellungen und Herausforderungen im Bereich Geldpolitik, -theorie und Finanzmärkte.</td>
</tr>
<tr>
<td>... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.</td>
</tr>
<tr>
<td>... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.</td>
</tr>
<tr>
<td>... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>· Empirische Evidenz zu geldpolitischen Effekten</td>
</tr>
<tr>
<td>· Transaktionsfrktionen und Geldnachfrage</td>
</tr>
<tr>
<td>· Finanzintermediäre, Banken und Liquidität</td>
</tr>
<tr>
<td>· Geldpolitik und Banken</td>
</tr>
<tr>
<td>· Finanzkontrakte</td>
</tr>
<tr>
<td>· Akzeleration über Finanzmärkte</td>
</tr>
<tr>
<td>· Unkonventionelle Geldpolitik und Interbankenmärkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
</tr>
<tr>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlung: BM Macroeconomics oder BM Advanced Macroeconomics</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Titel des Moduls
SM Markets and Economic Policy III

Art des Moduls
- Schwerpunktmodul

Kennnummer
1302MSME P3

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs- punkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1302MSME P3</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>Jedes 2. Semester</td>
<td>WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Economics</td>
<td>45 h</td>
<td>135 h</td>
<td></td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...
- bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
- erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
- begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
- beurteilen in Selbst- und Fremdreflexion Ihren eigenen Handlungsprozess und erfassen Entwicklungspotentiale.

3 Inhalte des Moduls
- Einführung in die Entwicklungsökonomie anhand von Ergebnissen theoretischer und empirischer Forschung
- Ursachen und Wirkungen von Armut, Unterinvestment in Gesundheit, Bildung und Vermögen
- Risiko und Versicherung
- Methoden zur Evaluierung von Entwicklungshilfemaßnahmen

4 Lehr- und Lernformen

- Vorlesung
- Übung

5 Modulvoraussetzungen
Empfehlung: BM Econometrics oder BM Applied Econometrics (Business Administration)
<table>
<thead>
<tr>
<th></th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (90)</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Vergabe von Leistungspunkten</td>
</tr>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
<tr>
<td>8</td>
<td>Verwendung des Moduls (in anderen Studiengängen)</td>
</tr>
<tr>
<td></td>
<td>Master of Science Economics:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Accounting and Taxation:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Accounting and Taxation</td>
</tr>
<tr>
<td></td>
<td>Master of Science Information Systems:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Information Systems</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Corporate Development:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Corporate Development</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Finance:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Finance</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Marketing:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Marketing</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Supply Chain Management:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Supply Chain Management</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Politikwissenschaft:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Politikwissenschaft</td>
</tr>
<tr>
<td></td>
<td>Master of Science Sociology: Social Research:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Sociology: Social Research</td>
</tr>
<tr>
<td></td>
<td>Master of Science Sociology: Social and Economic Psychology:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Sociology: Social and Economic Psychology</td>
</tr>
<tr>
<td></td>
<td>Master of Science International Management:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich International Management</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien Ost- und Mitteleuropa - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien Lateinamerika - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien China - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>Master of Science Mathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Wirtschaftsmathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Geographie:</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtfach Management & Social Sciences</td>
</tr>
<tr>
<td>9</td>
<td>Gesamtnote/Fachnote</td>
</tr>
<tr>
<td></td>
<td>6/114</td>
</tr>
<tr>
<td>10</td>
<td>Modulbeauftragte/r</td>
</tr>
<tr>
<td></td>
<td>Univ.-Prof. Dr. Erik Hornung</td>
</tr>
</tbody>
</table>
11 Sonstige Informationen

Titel des Moduls
SM Markets and Economic Policy IV

Art des Moduls
o Schwerpunktmodul

Kurztitel
SM-MarkEP4

Kennnummer
1302MSME
P4

Workload
180 h
Leistungs punkte
6 LP

Studien semester
ab dem ersten Semester

Häufigkeit des Angebots
Jedes 2. Semester

Beginn des Angebots
SoSe

Dauer
1 Semester

1 Lehrveranstaltungen
Macroeconomics of the Labour Market

Kontaktzeit
45 h

Selbststudium
135 h

geplante Gruppengröße

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen.

3 Inhalte des Moduls
- Arbeitsmarkt dynamik: das Entstehen und Vergehen von Arbeitsplätzen
- Theorie der Sucharbeitslosigkeit
- Das Search and Matching Modell des Arbeitsmarktes
- Strukturelle Arbeitsmarktpolitiken: Kündigungsschutz und Arbeitslosenversicherung
- Arbeitsmarkt und Konjunktur
- Spezielle Themen der Makroökonomik der Arbeitsmärkte

4 Lehr- und Lernformen
Vorlesung
Übung

5 Modulvoraussetzungen
<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (90)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Economics:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Accounting and Taxation:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Accounting and Taxation</td>
</tr>
<tr>
<td></td>
<td>Master of Science Information Systems:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Information Systems</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Corporate Development:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Corporate Development</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Finance:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Finance</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Marketing:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Marketing</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Supply Chain Management:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Supply Chain Management</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Politikwissenschaft:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Politikwissenschaft</td>
</tr>
<tr>
<td></td>
<td>Master of Science Sociology: Social Research:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Sociology: Social Research</td>
</tr>
<tr>
<td></td>
<td>Master of Science Sociology: Social and Economic Psychology:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Sociology: Social and Economic Psychology</td>
</tr>
<tr>
<td></td>
<td>Master of Science International Management:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich International Management</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien Ost- und Mitteleuropa - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien Lateinamerika - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien China - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>Master of Science Mathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Wirtschaftsmathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Geographie:</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtfach Management & Social Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
</table>

204
| 10 | Modulbeauftragte/r
Univ.-Prof. Michael Krause, Ph. D. |
| 11 | Sonstige Informationen |

Titel des Moduls
SM Markets and Economic Policy V

Art des Moduls
- Schwerpunktmodul

Kurztitel
SM-MarkEP5

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1302MSME P5</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>Jedes 2. Semester</td>
<td>SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

| 1 | Lehrveranstaltungen
Determinants of Growth in Economic History |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontaktzeit</td>
<td>45 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>135 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
</table>
| ... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.
... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.
... bewerten aktuelle gesellschaftliche Entwicklungen kritisch und entwickeln alternative Lösungen. |

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
</table>
| - Einführung in die Determinanten der langfristigen Entwicklung und des Wachstums in der Wirtschaftsgeschichte, insbesondere Geographie, Institutionen und kulturelle Faktoren
- Methoden für die Beurteilung von Ursache-Wirkungsbeziehung zwischen den Determinanten und dem gegenwärtigen Entwicklungsstand |

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
</table>
| Vorlesung
Übung |
<table>
<thead>
<tr>
<th></th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Empfehlung: BM Econometrics oder BM Applied Econometrics (Business Administration)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (90)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
</table>
| | Master of Science Economics:
| | Schwerpunktbereich Economics
| | Ergänzungsbereich Economics
| | Master of Science Business Administration - Accounting and Taxation:
| | Ergänzungsbereich Accounting and Taxation
| | Master of Science Information Systems:
| | Ergänzungsbereich Information Systems
| | Master of Science Business Administration - Corporate Development:
| | Ergänzungsbereich Corporate Development
| | Master of Science Business Administration - Finance:
| | Ergänzungsbereich Finance
| | Master of Science Business Administration - Marketing:
| | Ergänzungsbereich Marketing
| | Master of Science Business Administration - Supply Chain Management:
| | Ergänzungsbereich Supply Chain Management
| | Master of Arts Politikwissenschaft:
| | Ergänzungsbereich Politikwissenschaft
| | Master of Science Sociology: Social Research:
| | Ergänzungsbereich Sociology: Social Research
| | Master of Science Sociology: Social and Economic Psychology:
| | Ergänzungsbereich Sociology: Social and Economic Psychology
| | Master of Science International Management:
| | Ergänzungsbereich International Management
| | Master of Arts Regionalstudien Ost- und Mitteleuropa - Volkswirtschaftslehre:
| | Ergänzungsbereich Volkswirtschaftslehre
| | Master of Arts Regionalstudien Lateinamerika - Volkswirtschaftslehre:
| | Ergänzungsbereich Economics
| | Master of Arts Regionalstudien China - Volkswirtschaftslehre:
| | Ergänzungsbereich Volkswirtschaftslehre
| | Master of Science Mathematik:
| | Economics
| | Master of Science Wirtschaftsmathematik:
| | Economics
| | Master of Science Geographie:
| | Wahlpflichtfach Management & Social Sciences

<table>
<thead>
<tr>
<th></th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Modulbeauftragte/r</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Market Design and Behavior I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Kurztitel</td>
</tr>
<tr>
<td>o Schwerpunktmodul</td>
<td>SM-MarkEDB1</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>Workload</td>
</tr>
<tr>
<td>1289MSMD B1</td>
<td>180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information and Strategy</td>
<td>45 h</td>
<td>135 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden...</td>
<td>... verstehen weiterführende, spezialisierte Theorien / Methoden im Bereich Informationsökonomik.</td>
</tr>
<tr>
<td></td>
<td>... bewerten und diskutieren Erkenntnisse und Forschungsergebnisse spezialisierter Theorien / Methoden.</td>
</tr>
<tr>
<td></td>
<td>... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.</td>
</tr>
<tr>
<td></td>
<td>... präsentieren wissenschaftliche Ergebnisse adressatengerecht.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

| 5 | Modulvoraussetzungen |
| 6 | **Form der Modulprüfung/Modulabschlussprüfung**
| | Kombinierte Prüfung: RE, HA |
| 7 | **Voraussetzungen für die Vergabe von Leistungspunkten**
| | Bestehen der Modulabschlussprüfung |
| 8 | **Verwendung des Moduls (in anderen Studiengängen)**
| | Master of Science Economics:
| | Schwerpunktbereich Economics
| | Ergänzungsbereich Economics
| | Master of Science Business Administration - Accounting and Taxation:
| | Ergänzungsbereich Accounting and Taxation
| | Master of Science Information Systems:
| | Ergänzungsbereich Information Systems
| | Master of Science Business Administration - Corporate Development:
| | Ergänzungsbereich Corporate Development
| | Master of Science Business Administration - Finance:
| | Ergänzungsbereich Finance
| | Master of Science Business Administration - Marketing:
| | Ergänzungsbereich Marketing
| | Master of Science Business Administration - Supply Chain Management:
| | Ergänzungsbereich Supply Chain Management
| | Master of Arts Politikwissenschaft:
| | Ergänzungsbereich Politikwissenschaft
| | Master of Science Sociology: Social Research:
| | Ergänzungsbereich Sociology: Social Research
| | Master of Science Sociology: Social and Economic Psychology:
| | Ergänzungsbereich Sociology: Social and Economic Psychology
| | Master of Science International Management:
| | Ergänzungsbereich International Management
| | Master of Arts Regionalstudien Ost- und Mitteleuropa - Volkswirtschaftslehre:
| | Ergänzungsbereich Volkswirtschaftslehre
| | Master of Arts Regionalstudien Lateinamerika - Volkswirtschaftslehre:
| | Ergänzungsbereich Economics
| | Master of Arts Regionalstudien China - Volkswirtschaftslehre:
| | Ergänzungsbereich Volkswirtschaftslehre
| | Master of Science Mathematik:
| | Economics
| | Master of Science Wirtschaftsmathematik:
| | Economics
| | Master of Science Geographie:
| | Wahlpflichtfach Management & Social Sciences |
| 9 | **Gesamtnote/Fachnote**
| | 6/114 |
Titel des Moduls
SM Market Design and Behavior II

Art des Moduls
- Schwerpunktmodul

Kurztitel
SM-MarkEDB2

Kennnummer
1289MSMD B2

Workload
180 h

Leistungspunkte
6 LP

Studiensemester
ab dem ersten Semester

Häufigkeit des Angebots
unregelmäßig

Beginn des Angebots
WiSe/SoSe

Dauer
1 Semester

1 Lehrveranstaltungen
Economic Engineering

Kontaktzeit
45 h

Selbststudium
135 h

geplante Gruppengröße

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...

... analysieren aktuelle Fragestellungen und Herausforderungen im Bereich Marktdesign.

... erstellen eine wissenschaftliche Arbeit zu einem ausgewählten Thema und leisten dabei einen eigenständigen wissenschaftlichen Beitrag.

... diskutieren Probleme in Märkten im Hinblick auf verschiedene Anspruchsgruppen fachgerecht.

... bewerten aktuelle Entwicklungen in verschiedenen Märkten kritisch und entwickeln alternative Lösungen

3 Inhalte des Moduls
- Evaluation der Rollen von Theorie, Labor- sowie Feldexperimenten für die Entwicklung von Märkten und Anreizsystemen
- Analyse von relevanten Verhaltensphänomenen und institutionellen Details, die für spezifische Designs von besonderer Wichtigkeit sind
- Diskussion praktischer Anwendungen von Economic Engineering in Matching Märkten, bei Auktionen und weiteren Märkten

4 Lehr- und Lernformen
Vorlesung
Übung

5 Modulvoraussetzungen
Empfehlung: Basiskenntnisse in Spieltheorie und experimenteller Wirtschaftsforschung

Form der Modulprüfung/Modulabschlussprüfung
Kombinierte Prüfung: RE, HA

Voraussetzungen für die Vergabe von Leistungspunkten
Bestehen der Modulabschlussprüfung

Verwendung des Moduls (in anderen Studiengängen)

Master of Science Economics:
- Schwerpunktbereich Economics
- Ergänzungsbereich Economics

Master of Science Business Administration - Accounting and Taxation:
- Ergänzungsbereich Accounting and Taxation

Master of Science Information Systems:
- Ergänzungsbereich Information Systems

Master of Science Business Administration - Corporate Development:
- Ergänzungsbereich Corporate Development

Master of Science Business Administration - Finance:
- Ergänzungsbereich Finance

Master of Science Business Administration - Marketing:
- Ergänzungsbereich Marketing

Master of Science Business Administration - Supply Chain Management:
- Ergänzungsbereich Supply Chain Management

Master of Arts Politikwissenschaft:
- Ergänzungsbereich Politikwissenschaft

Master of Science Sociology: Social Research:
- Ergänzungsbereich Sociology: Social Research

Master of Science Sociology: Social and Economic Psychology:
- Ergänzungsbereich Sociology: Social and Economic Psychology

Master of Science International Management:
- Ergänzungsbereich International Management

Master of Arts Regionalstudien Ost- und Mitteleuropa - Volkswirtschaftslehre:
- Ergänzungsbereich Volkswirtschaftslehre

Master of Arts Regionalstudien Lateinamerika - Volkswirtschaftslehre:
- Ergänzungsbereich Economics

Master of Arts Regionalstudien China - Volkswirtschaftslehre:
- Ergänzungsbereich Volkswirtschaftslehre

Master of Science Mathematik:
- Economics

Master of Science Wirtschaftsmathematik:
- Economics

Master of Science Geographie:
- Wahlpflichtfach Management & Social Sciences

Gesamtnote/Fachnote
6/114
10 Modulbeauftragte/r
Univ.-Prof. Dr. Axel Ockenfels

11 Sonstige Informationen

Titel des Moduls
SM Market Design and Behavior III

Art des Moduls
- Schwerpunktmodul

Kurztitel
SM-MarkEDB3

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1289MSMD</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>Jedes 2. Semester</td>
<td>SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
- Economics of Innovation

2 Kontaktzeit
- 60 h

3 Selbststudium
- 120 h

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Methoden in Bereich der Ökonomie der Innovation.
... vertiefen ihre Kenntnisse ökonometrischer Methoden, bauen auf ihren Kenntnissen der Wirtschaftstheorie auf und studieren die Kernmerkmale der relevanten Daten.
... beurteilen und bewerten quantitative Erkenntnisse und Forschungsergebnisse.
... präsentieren und diskutieren wissenschaftliche Beiträge zielgruppengerecht.
... werden in neue Forschungsfragen eingeführt und zur Entwicklung origineller Forschungsideen angeleitet.
... wenden Techniken des wissenschaftlichen Arbeitens und guter wissenschaftlicher Praxis an.

3 Inhalte des Moduls
- Zentrale und aktuelle Forschung in der Ökonomie der Innovation:
- Ideen- und Wissensproduktion, Annahme und Verbreitung von Technologien, Mobilität von Innovatoren und Einzelpersonen in der hochqualifizierten Arbeitnehmerschaft
- Wettbewerb auf den Produktmärkten, Marktzutritt, Innovation und wirtschaftliches Wachstum
- Innovation, Produktivität und Umverteilung
- Rechte an geistigem Eigentum, Wissenschaft und Grundlagenforschung
- Forschungs-, Innovations- und Wachstumspolitik
- Entscheidungsfindung von Erfindern, Innovatoren, Unternehmern und Verbrauchern auf neuen Märkten
- Künstliche Intelligenz, Automatisierung und digitale Transformation
- Methoden der empirischen Modellierung und ökonometrische Methoden:
 - mögliche Ergebnisse, Behandlungen, Zuweisungsmechanismen und Identifizierung von kausalen Effekten
- Differenz-in-Differenzen-Methoden, Methoden mit instrumentellen Variablen
- Neigungsbewertung und Matching-Methoden, nicht- und semiparametrische Modelle, maschinelles Lernen
- Wirtschaftstheorie und Datenquellen

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: PO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Economics:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Science: Economic Research:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economic Research</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien Ost- und Mitteleuropa - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien Lateinamerika - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien China - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>Master of Science Mathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Wirtschaftsmathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Geographie:</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtfach Management & Social Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/114</td>
</tr>
</tbody>
</table>
Titel des Moduls
SM Market Design and Behavior IV

Art des Moduls
- Schwerpunktmodul

Kurztitel
SM-MarkEDB4

Kennnummer
1289MSMD B4

Workload
180 h

Leistungspunkte
6 LP

Studiensemester
ab dem ersten Semester

Häufigkeit des Angebots
Jedes 2. Semester

Beginn des Angebots
SoSe

Dauer
1 Semester

1 Lehrveranstaltungen
a) Auction Theory (WS)
b) Vertragstheorie

Kontaktzeit
a) 60 h
b) 45 h

Selbststudium
a) 120 h
b) 135 h

geplante Gruppengröße

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Methoden der formalen Institutionenökonomik.
... analysieren Fragestellungen und Herausforderungen in Situationen mit Informationsasymmetrien.
... bewerten Erkenntnisse und Forschungsergebnisse der Theorie ökonomischer Anreize.
... lösen vertragstheoretische Probleme selbstständig.

3 Inhalte des Moduls
Vertragstheorie:
- Prinzipal-Agenten Modelle
- Moral Hazard, Adverse Selection
- Hold-up Problem
- Unvollständige Verträge ///

Auction Theory (Wintersemester, bis 2022/23):
- Auktionen mit „Private Values“: Zweitpreisauctionen, Erstpreisauctionen, Reservationspreise, Revenue Equivalence Theorem, Erweiterungen • Mechanis-
Titel des Moduls
SM Market Design and Behavior V

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Empfehlung: Basiskenntnisse in Spieltheorie und experimenteller Wirtschaftsforschung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (60)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Economics:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien Ost- und Mitteleuropa - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien Lateinamerika - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien China - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>Master of Science Mathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Wirtschaftsmathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Geographie:</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtfach Management & Social Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univ.-Prof. Dr. Patrick W. Schmitz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunktmodul</td>
<td>SM-MarkEDB5</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>1289MSMD B5</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>Jedes 2. Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>SoSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corporate Taxation</td>
<td>45 h</td>
<td>135 h</td>
<td></td>
</tr>
</tbody>
</table>

2	Ziele des Moduls und zu erwerbende Kompetenzen
	Die Studierenden...
	... verstehen die Implikationen der Digitalisierung für die Steuerpolitik.
	... können Reformoptionen der Unternehmensbesteuerung bewerten.
	... entwickeln einen konzeptionellen Rahmen zur Analyse der Interdependenz von Unternehmensbesteuerung, Handelspolitik und Umweltpolitik.
	... lernen über politik-relevante Forschung mit einem akademischen Publikum zu kommunizieren.
	... lernen über politik-relevante Forschung mit einem nicht-akademischen Publikum zu kommunizieren.
	... führen einen Diskurs über Optionen der Politikgestaltung.
	... analysieren die Steuerpolitik unter Berücksichtigung ethischer, sozialer und ökologischer Aspekte.
	... nehmen Stellung zu aktuellen Reformvorschlägen in der Steuerpolitik.
	... verwenden die empirischen und theoretischen Methoden der angewandten Finanzwissenschaft.

3	Inhalte des Moduls
	- Steuerwettbewerb
	- Steuerpolitik und Digitalisierung
	- Reformoptionen der Unternehmensbesteuerung
	- Grenzausgleichssteuern
	- Grenzausgleichssteuern und Klimawandel
	- Unternehmensbesteuerung und Unternehmensfinanzierung

4	Lehr- und Lernformen
	Vorlesung
	Übung

<p>| 5 | Modulvoraussetzungen |
| | Empfehlung: BM Microeconomics oder BM Microeconomics (Business Administration) |</p>
<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (60)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Economics:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Accounting and Taxation:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Accounting and Taxation</td>
</tr>
<tr>
<td></td>
<td>Master of Science Information Systems:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Information Systems</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Corporate Development:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Corporate Development</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Finance:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Finance</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Marketing:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Marketing</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Supply Chain Management:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Supply Chain Management</td>
</tr>
<tr>
<td></td>
<td>Master of Science Economic Research:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economic Research</td>
</tr>
<tr>
<td></td>
<td>Master of Science International Management:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich International Management</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien Ost- und Mitteleuropa - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien Lateinamerika - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Arts Regionalstudien China - Volkswirtschaftslehre:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Volkswirtschaftslehre</td>
</tr>
<tr>
<td></td>
<td>Master of Science Mathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Wirtschaftsmathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Geographie:</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtfach Management & Social Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univ.-Prof. Dr. Felix Bierbrauer</td>
</tr>
</tbody>
</table>

<p>| 11 | Sonstige Informationen |</p>
<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>BM Econometrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>o Basismodul</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>BM-Econo</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>1314MBEC O1</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungs punkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studien semester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>Jedes 2. Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Corporate Taxation</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Ziele des Moduls und zu erwerbende Kompetenzen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die Studierenden...</td>
<td>... verstehen weiterführende, spezialisierte Theorien / Methoden.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... analysieren reale Fragestellungen und Herausforderungen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lineares Regressionsmodell</td>
<td></td>
</tr>
<tr>
<td>• Kleinstquadrate (KQ) Methode und verallgemeinerte Kleinstquadrate Methode</td>
<td></td>
</tr>
<tr>
<td>• Endogenität und Instrument-Variablen (IV) Methode</td>
<td></td>
</tr>
<tr>
<td>• Maximum-Likelihood (ML) Methode</td>
<td></td>
</tr>
<tr>
<td>• Modelle für begrenzt abhängige Variablen</td>
<td></td>
</tr>
<tr>
<td>• Zeitreihenmodelle</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlung: Grundkenntnisse der Statistik und Matrixalgebra</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: KL (90)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Modulabschlussprüfung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verwendung des Moduls (in anderen Studiengängen)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Master of Science Economics:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Finance:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Finance</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Marketing:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Marketing</td>
</tr>
<tr>
<td></td>
<td>Master of Science Mathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Wirtschaftsmathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univ.-Prof. Dr. Roman Liesenfeld</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sonstige Informationen</th>
</tr>
</thead>
</table>

Titel des Moduls

BM Empirical Methods

Art des Moduls

- Basismodul

Kurztitel

BM-EmpM

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1314MA-EMT1</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>Jedes 2. Semester</td>
<td>SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Empirical Methods</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 h</td>
<td>135 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden...</td>
</tr>
<tr>
<td></td>
<td>... verstehen weiterführende, spezialisierte Theorien / Methoden.</td>
</tr>
<tr>
<td></td>
<td>... analysieren reale Fragestellungen und Herausforderungen.</td>
</tr>
<tr>
<td></td>
<td>... erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.</td>
</tr>
<tr>
<td></td>
<td>... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.</td>
</tr>
</tbody>
</table>
... verwenden selbstständig Techniken des wissenschaftlichen Arbeitens und der guten wissenschaftlichen Praxis.

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Grundsätze der modernen Datenanalyse</td>
</tr>
<tr>
<td></td>
<td>• Parametrische und nichtparametrische statistische Schlussfolgerung</td>
</tr>
<tr>
<td></td>
<td>• Kausale Schlussfolgerung</td>
</tr>
<tr>
<td></td>
<td>• Spezialisierte ökonometrische Werkzeuge</td>
</tr>
<tr>
<td></td>
<td>• Maschinelle Lernverfahren und Großdatenmethoden</td>
</tr>
<tr>
<td></td>
<td>• Methoden zur Klassifizierung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Empfehlung: BM Econometrics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (90)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Economics: Schwerpunktbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Mathematik: Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Wirtschaftsmathematik: Economics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univ.-Prof. Dr. Jörg Breitung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
</table>

Titel des Moduls
SM Empirical Methods and Data Analysis I

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Schwerpunktmodul</td>
<td>SM-EmpMDA1</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>Workload</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>1314MSEM D1</td>
<td>180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Statistical Inference</td>
<td>a) 45 h</td>
<td>a) 135 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Topics in Econometrics and Statistics I</td>
<td>b) 45 h</td>
<td>b) 135 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 **Ziele des Moduls und zu erwerbende Kompetenzen**

Die Studierenden...

... verstehen weiterführende, spezialisierte Theorien / Methoden.

3 **Inhalte des Moduls**

- Grundlagen der Wahrscheinlichkeitsrechnung
- Theorie der Punktschätzung und Schätzverfahren (z.B. Maximum Likelihood)
- Theorie der Hypothesentests und ausgewählte Testverfahren
- Intervallschätzung

4 **Lehr- und Lernformen**

- Vorlesung
- Übung

5 **Modulvoraussetzungen**

Empfehlung: Grundkenntnisse der Wahrscheinlichkeitstheorie

6 **Form der Modulprüfung/Modulabschlussprüfung**

Schriftliche Prüfung: KL (90)

7 **Voraussetzungen für die Vergabe von Leistungspunkten**

Bestehen der schriftlichen Prüfung eines Kurses. Ein Kurs ist zu besuchen; die schriftliche Prüfung bezieht sich auf den Inhalt eines Kurses.

8 **Verwendung des Moduls (in anderen Studiengängen)**

- Master of Science Economics: Schwerpunktbereich Economics
- Master of Science Business Administration - Accounting and Taxation: Ergänzungsbereich Accounting and Taxation
- Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development
- Master of Science Business Administration - Finance: Ergänzungsbereich Finance
- Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing
- Master of Science Business Administration - Supply Chain Management: Ergänzungsbereich Supply Chain Management
<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Empirical Methods and Data Analysis II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Schwerpunktmoodle</td>
</tr>
<tr>
<td>Kurztitel</td>
<td>SM-EmpMDA2</td>
</tr>
<tr>
<td>Kenn- nummer</td>
<td>1314MSE MD1</td>
</tr>
<tr>
<td>Workload</td>
<td>180 h</td>
</tr>
<tr>
<td>Leistungs- punkte</td>
<td>6 LP</td>
</tr>
<tr>
<td>Studien- semester</td>
<td>ab dem ersten Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots</td>
<td>Jedes 2. Semester</td>
</tr>
<tr>
<td>Beginn des Angebots</td>
<td>WiSe</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Microeconometrics
 b) Topics in Econometrics and Statistics II

2 Kontaktzeit
 a) 45h
 b) 45h

3 Selbststudium
 a) 135h
 b) 135h

geplante Gruppen- größe

3 Inhalte des Moduls

Ziele des Moduls und zu erwerbende Kompetenzen

Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden.
... analysieren reale Fragestellungen und Herausforderungen.
... erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat mit (fachfremden) Personen.

200
- Begrenzte abhängige Variablen
- Bewertung der Behandlungseffekte
- Analyse der Dauer

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlung: BM Econometrics oder BM Applied Econometrics (Business Administration) oder BM Advanced Econometrics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: KL (60)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der mündlichen Prüfung eines Kurses. Ein Kurs ist zu besuchen; die mündliche Prüfung bezieht sich auf den Inhalt eines Kurses</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Economics: Schwerpunktbereich Economics</td>
<td></td>
</tr>
<tr>
<td>Master of Science Economics: Ergänzungsbereich Economics</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Accounting and Taxation: Ergänzungsbereich Accounting and Taxation</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Corporate Development: Ergänzungsbereich Corporate Development</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Finance: Ergänzungsbereich Finance</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Marketing: Ergänzungsbereich Marketing</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Supply Chain Management: Ergänzungsbereich Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science Economic Research: Schwerpunktbereich Economic Research</td>
<td></td>
</tr>
<tr>
<td>Master of Science International Management: Ergänzungsbereich International Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science Information Systems: Ergänzungsbereich Information Systems</td>
<td></td>
</tr>
<tr>
<td>Master of Science Mathematik: Economics</td>
<td></td>
</tr>
<tr>
<td>Master of Science Wirtschaftsmathematik: Economics</td>
<td></td>
</tr>
<tr>
<td>Master of Science Data Analytics & Econometrics: Schwerpunktbereich Data Analytics & Econometrics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/114</td>
<td></td>
</tr>
</tbody>
</table>

| 10 | Modulbeauftragte/r |
Titel des Moduls
SM Empirical Methods and Data Analysis III

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Schwerpunktmodul</td>
<td>SM-EmpMDA3</td>
</tr>
</tbody>
</table>

Kennnum-	Work-	Leis-	Studien-	Häufigkeit	Beginn	Dauer
mer	load	tungs-	semester	des Ange-	des Ange-	1 Semes-
	180 h	punkte		bots	bots	ter
1314MSEM	6 LP		ab dem ersten Semester	Jedes 2. Semester	SoSe	Semester
D3						

1 Lehrveranstaltungen
a) Time Series Econometrics
b) Stochastic Models and Processes
c) Topics in Econometrics and Statistics III

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 45h</td>
<td>a) 135h</td>
</tr>
<tr>
<td>b) 45h</td>
<td>b) 135h</td>
</tr>
<tr>
<td>c) 45h</td>
<td>c) 135h</td>
</tr>
</tbody>
</table>

Selfstudium
a) 135h
b) 135h
c) 135h

geplante Gruppengröße

2 Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden.
... analysieren reale Fragestellungen und Herausforderungen.
... erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.

3 Inhalte des Moduls

a) Time Series Econometrics:
 - ARMA Modelle
 - Zustandsraum Modelle
 - Modelle für nicht stationäre Zeitreihen
 - Multivariate Zeitreihenmodelle
 - Nicht-Stationarität in multivariaten Zeitreihen

b) Stochastic Models and Processes:
 - vertiefende Themen aus der statistischen Inferenz
 - Bootstrap
 - nichtparametrische Dichteschätzer
 - nichtparametrische Tests (z.B. auf Unabhängigkeit)
 - Brownsche Bewegungen
 - Poisson-Prozesse
<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfehlung: Solide Grundkenntnisse der Wahrscheinlichkeitstheorie</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: KL (90)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der schriftlichen Prüfung eines Kurses. Ein Kurs ist zu besuchen; die schriftliche Prüfung bezieht sich auf den Inhalt eines Kurses.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Science Economics:</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktbereich Economics</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Economics</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Accounting and Taxation:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Accounting and Taxation</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Corporate Development:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Corporate Development</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Finance:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Finance</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Marketing:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Marketing</td>
<td></td>
</tr>
<tr>
<td>Master of Science Business Administration - Supply Chain Management:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science Economic Research:</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktbereich Economics</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Economics</td>
<td></td>
</tr>
<tr>
<td>Master of Science International Management:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich International Management</td>
<td></td>
</tr>
<tr>
<td>Master of Science Information System:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Information System</td>
<td></td>
</tr>
<tr>
<td>Master of Science Mathematik:</td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td></td>
</tr>
<tr>
<td>Master of Science Wirtschaftsmathematik:</td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td></td>
</tr>
<tr>
<td>Master of Science Data Analytics & Econometrics:</td>
<td></td>
</tr>
<tr>
<td>Ergänzungsbereich Data Analytics & Econometrics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr. Dominik Wied</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Sonstige Informationen</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Titel des Moduls
SM Empirical Methods and Data Analysis IV

Art des Moduls
o Schwerpunktmodul

Kurztitel
SM-EmpMDA4

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1314MBEC O1</td>
<td>180 h</td>
<td>6 LP</td>
<td>ab dem ersten Semester</td>
<td>Jedes 2. Semester</td>
<td>WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

| 1 | Lehrveranstaltungen
a) Statistical Analysis of Financial Data
b) Topics in Econometrics and Statistics IV |
| --- | --- |

| Kontaktzeit | Selbststudium
a) 45h
b) 45h
a) 135h
b) 135h |
| --- | --- |

<table>
<thead>
<tr>
<th>geplante Gruppengröße</th>
</tr>
</thead>
</table>

| 2 | Ziele des Moduls und zu erwerbende Kompetenzen
Die Studierenden...
... verstehen weiterführende, spezialisierte Theorien / Methoden.
... analysieren reale Fragestellungen und Herausforderungen.
... erheben und analysieren Daten mit Hilfe quantitativer / qualitativer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.
... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen. |
| --- | --- |

| 3 | Inhalte des Moduls
- Eigenschaften von Finanzmarktzeitreihen
- Zeitreihenmodelle
- Effizienz von Wertpapiermärkten
- Empirische Analyse des Capital Asset Pricing Modells
- Empirische Analyse des intertemporaler Asset Pricing Modelle
- Volatilitätsmodelle
- Marktmikrostruktur und Hochfrequenzdaten |
| --- | --- |

| 4 | Lehr- und Lernformen
Vorlesung
Übung |
| --- | --- |

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
</table>
Empfehlung: Solide Kenntnisse grundlegender Methoden der Statistik und Ökonometrie; BM Econometrics oder BM Applied Econometrics (Business Administration) oder BM Advanced Econometrics

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung: KL (90)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der schriftlichen Prüfung eines Kurses. Ein Kurs ist zu besuchen; die schriftliche Prüfung bezieht sich auf den Inhalt eines Kurses.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master of Science Economics:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktbereich Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Finance:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Finance</td>
</tr>
<tr>
<td></td>
<td>Basisbereich Finance</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Marketing:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Marketing</td>
</tr>
<tr>
<td></td>
<td>Master of Science Business Administration - Accounting and Taxation:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Accounting and Taxation</td>
</tr>
<tr>
<td></td>
<td>Master of Science International Management:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich International Management</td>
</tr>
<tr>
<td></td>
<td>Master of Science Data Analytics & Econometrics:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Data Analytics & Econometrics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Information System:</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsbereich Information System</td>
</tr>
<tr>
<td></td>
<td>Master of Science Mathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
<tr>
<td></td>
<td>Master of Science Wirtschaftsmathematik:</td>
</tr>
<tr>
<td></td>
<td>Economics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/114</td>
</tr>
</tbody>
</table>

| 10 | Modulbeauftragte/r |
| | Univ.-Prof. Dr. Roman Liesenfeld |

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>SM Empirical Methods and Data Analysis V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art des Moduls</td>
<td>Kurztitel</td>
</tr>
<tr>
<td>o Schwerpunktmmodul</td>
<td>SM-EmpMDA5</td>
</tr>
<tr>
<td>Kennnummer</td>
<td>Workload</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>1314MBE CO1</td>
<td>180 h</td>
</tr>
</tbody>
</table>

1 **Lehrveranstaltungen**

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Multivariate Statistics</td>
<td>a) 45 h</td>
<td>a) 135 h</td>
</tr>
<tr>
<td>b) Panel Data Analysis</td>
<td>b) 45 h</td>
<td>b) 135 h</td>
</tr>
<tr>
<td>c) Bayesian Econometrics</td>
<td>c) 45 h</td>
<td>c) 135 h</td>
</tr>
<tr>
<td>d) Topics in Econometrics and Statistics III</td>
<td>d) 45 h</td>
<td>d) 135 h</td>
</tr>
</tbody>
</table>

2 **Ziele des Moduls und zu erwerbende Kompetenzen**

Die Studierenden...

... verstehen weiterführende, spezialisierte Methoden der Statistik und Ökonometrie.

... analysieren reale Fragestellungen und Herausforderungen der Statistik und Ökonometrie.

... Analysieren Daten mit Hilfe statistischer und ökonometrischer Methoden zu ausgewählten wissenschaftlichen Fragestellungen.

... begründen und verteidigen (eigenständig erarbeitete) Positionen oder Problemlösungen.

... diskutieren wissenschaftliche Themen fachgerecht und situationsadäquat.

... verwenden selbstständig Techniken des wissenschaftlichen Arbeitens und der guten wissenschaftlichen Praxis.

- Neuere ökonometrische und statistische Methoden
- Anwendungen im Bereich der Wirtschafts- und Sozialwissenschaften

3 **Inhalte des Moduls**

<table>
<thead>
<tr>
<th>Inhalte des Moduls</th>
<th>Kontaktzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Multivariate Statistics:</td>
<td></td>
</tr>
<tr>
<td>- Varianzanalyse</td>
<td></td>
</tr>
<tr>
<td>- Eigenwerte</td>
<td></td>
</tr>
<tr>
<td>- Hauptkomponentenanalyse</td>
<td></td>
</tr>
<tr>
<td>- Faktoranalyse</td>
<td></td>
</tr>
<tr>
<td>- Diskriminanzanalyse</td>
<td></td>
</tr>
<tr>
<td>- Clusteranalyse</td>
<td></td>
</tr>
<tr>
<td>- Multivariates Testen</td>
<td></td>
</tr>
<tr>
<td>- Korrelationsanalyse</td>
<td></td>
</tr>
<tr>
<td>b) Panel Data Analysis:</td>
<td></td>
</tr>
<tr>
<td>- statisches Paneldatenmodell</td>
<td></td>
</tr>
<tr>
<td>- dynamisches Paneldatenmodell</td>
<td></td>
</tr>
<tr>
<td>- Erweiterungen</td>
<td></td>
</tr>
<tr>
<td>- Faktoranalyse</td>
<td></td>
</tr>
</tbody>
</table>
c) Bayesian Econometrics:
- Principles of Bayesian Econometrics
- Bayesian Estimation and Numerical Integration
- Importance Sampling and Markov-Chain-Monte-Carlo
- Linear Regression Model with Conjugate Prior Distributions
- Linear Regression Model with Non-Conjugate Prior Distributions
- Linear Regression Model with Generalized Covariance Structure
- Time Series Models
- Models for Discrete Dependent Variables
- Application of Learned Methods with the Help of Econometric Software for the Analysis of Economic Data Sets

d) Topics in Econometrics and Statistics 5:
- Newer Econometric and Statistical Methods
- Applications in the Field of Economics and Social Sciences

4 Lehr- und Lernformen
 Vorlesung
 Übung

5 Modulvoraussetzungen
 Empfehlung: BM Econometrics or BM Applied Econometrics (Business Administration) or BM Advanced Econometrics

6 Form der Modulprüfung/Modulabschlussprüfung
 Mündliche Prüfung: MP

7 Voraussetzungen für die Vergabe von Leistungspunkten
 Bestehen der schriftlichen Prüfung eines Kurses. Ein Kurs ist zu besuchen; die mündliche Prüfung bezieht sich auf den Inhalt eines Kurses.

8 Verwendung des Moduls (in anderen Studiengängen)
 Master of Science Economics:
 Schwerpunktbereich Economics
 Master of Science Business Administration - Finance:
 Ergänzungsbereich Finance
 Basisbereich Finance
 Master of Science Business Administration - Marketing:
 Ergänzungsbereich Marketing
 Master of Science Business Administration - Accounting and Taxation:
 Ergänzungsbereich Accounting and Taxation
 Master of Science International Management:
 Ergänzungsbereich International Management
 Master of Science Data Analytics & Econometrics:
 Ergänzungsbereich Data Analytics & Econometrics
 Master of Science Information System:
 Ergänzungsbereich Information System
 Master of Science Mathematics:
 Economics
A.5 Digital Humanities

Das Studium im Anwendungsfeld Digital Humanities setzt sich aus einem Basismodul Digital Humanities mit 9 LP und einem Aufbaumodul Digital Humanities mit 15 LP zusammen.

Das Basismodul kann aus den Vorlesungen *Einführung Textdaten* und *Einführung Visuelle Programmierung* gewählt werden.

<table>
<thead>
<tr>
<th>Titel des Moduls</th>
<th>Einführung Textdaten</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Ergänzungsmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurztitel</td>
<td>EM-EinfTD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs punkte</th>
<th>Studien- semester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3.</td>
<td>WiSe</td>
<td>nur WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>Lehrveranstaltungen</th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a) Vorlesung</td>
<td>30 h</td>
<td>150 h</td>
<td>20 Studierende</td>
</tr>
<tr>
<td></td>
<td>b) Übung</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ziele des Moduls und zu erwerbende Kompetenzen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die Studierenden haben einen Überblick über aktuelle technische, konzeptionelle, methodische und theoretische Herausforderungen in der Sprachverarbeitung. Sie kennen die wesentlichen Modellierungsansätze im Bereich maschineller Lernverfahren und können sie zielgerichtet einsetzen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung, praktische Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>keine</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung/Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Klausur</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul wird auch in den MA-Studiengängen „Informationsverarbeitung“ und „Medienwissenschaften/Medieninformatik“ angeboten.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Gesamtnote/Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/114</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professur für Digital Humanities – Sprachliche Informationsverarbeitung</td>
<td></td>
</tr>
</tbody>
</table>

| 11 | **Sonstige Informationen** |
Titel des Moduls
Einführung Visuelle Programmierung

Art des Moduls
- Ergänzungsmodul

Kurztitel
EM-EinfVP

Kenn-nummer

Work-load
270 h

Leistungs- punkte
9 LP

Studien- semester
1.-3.

Häufigkeit des Angebots
WiSe

Beginn des Angebots
nur WiSe

Dauer
1 Semester

1 Lehrveranstaltungen
a) Vorlesung
b) Übung

Kontaktzeit
30 h
30 h

Selbststudium
60 h
150 h

geplante Gruppen-größe
40 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen
Mit erfolgreichem Abschluss des Moduls sind die Studierenden in der Lage, anwendungsreife visuelle Programme Spiel- oder virtuelle Realität-Anwendungen unter Bezug zum Konzept der Intermedialität sowohl selbständig, als auch in Teamarbeit zu entwerfen, zu erstellen und zu dokumentieren sowie die eigenen Arbeiten kritisch zu reflektieren.

3 Inhalte des Moduls
Das Hauptgewicht des Moduls liegt auf der praktischen Arbeit in der performanten visuellen Programmierung mit einem Schwerpunkt entweder in der Spieleprogrammierung oder der VR-nahen 3D Simulation. Die Übung führt in das innere Funktionen einer Game Engine ein und befähigt die TeilnehmerInnen, die dabei heranzuziehenden Programmietechniken direkt zu üben. In dieser ersten Übung liegt das Schwer gewicht ausnahmslos auf der Realisierung komplexer visueller Anwendungen selbst (Grundlagen der 3D Programmierung, Simulation physikalischer Vorgänge, Materialeigenschaften, Lichtprobleme, Bewegung und Kollisionserkennung).

Die Vorlesung thematisiert die theoretischen Grundlagen für den in den Übungen bearbeiteten Stoff und legt die analytische Basis für die kritische Evaluierung der eigenen praktischen Arbeit.

4 Lehr- und Lernformen
Vorlesung, praktische Übung
<table>
<thead>
<tr>
<th></th>
<th>Titel des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verarbeitung von Textdaten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Ergänzungsmodul</td>
<td>EM-VerarbTD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Beginn des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>450 h</td>
<td>15 LP</td>
<td>1.-3. WiSe</td>
<td>nur WiSe</td>
<td>2 Semester</td>
<td></td>
</tr>
</tbody>
</table>
1 Lehrveranstaltungen

<table>
<thead>
<tr>
<th></th>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Hauptseminar</td>
<td>30 h</td>
<td>240 h</td>
<td>20 Studierende</td>
</tr>
<tr>
<td>b) Übung</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
<tr>
<td>c) Kolloquium</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
</tbody>
</table>

2 Ziele des Moduls und zu erwerbende Kompetenzen

Im Modul werden formale Kenntnisse vertieft und dabei Kompetenzen im Bereich der textwissenschaftlich ausgerichteten Digital Humanities erworben:

- Eine selbständige Programmierlösung zu einer gestellten Aufgabe aus dem Bereich der Prozessierung textueller Daten anzufertigen.
- Diese Lösung innerhalb von Kleingruppen zu diskutieren und anschließendefähig zu halten.
- Das angefertigte Werk geltenden Richtlinien folgend zu dokumentieren.
- Die Arbeit gegenüber einem Fachpublikum vorzustellen und zu verteidigen.

3 Inhalte des Moduls

4 Lehr- und Lernformen

Hauptseminar, praktische Übung, Kolloquium

5 Modulvoraussetzungen

keine

6 Form der Modulprüfung/Modulabschlussprüfung

Kombinierte Prüfung (Hausarbeit und Mündliche Darlegung)

7 Voraussetzungen für die Vergabe von Leistungspunkten
<table>
<thead>
<tr>
<th>Bestehen der Modulprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

8 **Verwendung des Moduls (in anderen Studiengängen)**
Das Modul wird auch in den MA-Studiengängen „Informationsverarbeitung“ und „Medienwissenschaften/Medieninformatik“ angeboten.

9 **Gesamtnote/Fachnote**
15/114

10 **Modulbeauftragte/r**
Professur für Digital Humanities – Sprachliche Informationsverarbeitung

11 **Sonstige Informationen**
Deutsch und englisch

Titel des Moduls
Verarbeitung von Mehrdimensionalen Daten

<table>
<thead>
<tr>
<th>Art des Moduls</th>
<th>Kurztitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergänzungsmodul</td>
<td>EM-VerarbMD</td>
</tr>
</tbody>
</table>

Kenn-	Workload	Leistungs-	Studien-	Häufigkeit	Beginn	Dauer
nummer		punkte	semester	des Ange-	des Ange-	
				bots	bots	
1	450 h	15 LP	1.-3.	WiSe	nur WiSe	2 Semes
2						ter

1 **Lehrveranstaltungen**

a) Hauptseminar
b) Übung
c) Kolloquium

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppen-größe</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 h</td>
<td>240 h</td>
<td></td>
</tr>
<tr>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
<tr>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
</tbody>
</table>

2 **Ziele des Moduls und zu erwerbende Kompetenzen**

Im Modul werden formale Kenntnisse vertieft und dabei Kompetenzen im Bereich der objektwissenschaftlich ausgerichteten Digital Humanities erworben:

- Eine selbständige Programmierlösung zu einer gestellten Aufgabe aus dem Bereich der Prozessierung mehrdimensionaler Daten anzufertigen.
- Diese Lösung innerhalb von Kleingruppen zu diskutieren und anschlussfähig zu halten.
Das angefertigte Werk geltenden Richtlinien folgend zu dokumentieren.
Die Arbeit gegenüber einem Fachpublikum vorzustellen und zu verteidigen.

3 Inhalte des Moduls

Das Kolloquium gibt einen Überblick über allgemeine Konzepte, die sich zur Umsetzung fachspezifischer Fragestellungen eignen.

Die Übung führt, je nach gewähltem Technologiebereich, in die praktische Handhabung notwendiger Verfahren oder Tools ein. Dies schließt die Implementation geeigneter Komponenten ein.

4 Lehr- und Lernformen

Hauptseminar, praktische Übung, Kolloquium

5 Modulvoraussetzungen

keine

6 Form der Modulprüfung/Modulabschlussprüfung

Kombinierte Prüfung (Hausarbeit und Mündliche Darlegung)

7 Voraussetzungen für die Vergabe von Leistungspunkten
A.6 Computational Biology

Das Studium im Anwendungsfeld Computational Biology setzt sich aus den beiden Basismodulen Computational Biology und Practical in Computational Biology mit jeweils 6 LP und einem Aufbaumodul Computational Biology mit 12 LP zusammen.

Basismodule:

<table>
<thead>
<tr>
<th>Identification number</th>
<th>Workload</th>
<th>Credit points</th>
<th>Term of studying</th>
<th>Frequency of occurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-B-C 1</td>
<td>180 h</td>
<td>6 LP</td>
<td>1st or higher</td>
<td>Winter term</td>
<td>15 weeks</td>
</tr>
</tbody>
</table>

Type of lessons
- Lectures
- Contact times 42 h
- Self-study times 138 h

Intended group size
- Approx. 50-70

Aims of the module and acquired skills
Students who successfully completed this module …

- have acquired detailed knowledge about the fundamentals of bioinformatics/computational biology (BICB).
- have acquired in-depth knowledge of important concepts and algorithms in BICB.
- know the kind of biological problems that can be solved with bioinformatic tools.
• are able to contextualize quantitative approaches and methods with other fields of biology.

Contents of the module
- Basic algorithms
- BICB algorithms
- DNA and RNA sequence analysis
- Genomes, transcriptomes, proteomes
- Gene expression analysis
- Prediction of protein architecture
- Databases of biological sequences
- Specialized biological databases
- Mathematical and statistical modelling

Teaching/Learning methods
- Lectures

Requirements for participation
Enrollment in the Master’s degree course “Biological Sciences”

Additional academic requirements
Good quantitative/mathematical skills are required.

Type of module examinations
Two hours written examination about topics of the lectures (100 % of the total module mark)

Requisites for the allocation of credits
Written examination at least “sufficient”

Compatibility with other Curricula
None

Significance of the module mark for the overall grade
6/114

Module coordinator
Prof. Dr. Thomas Wiehe, phone 470 1588, e-mail: twiehe@uni-koeln.de

Additional information
Participating faculty: Prof. Dr. A. Beyer, Prof. Dr. K. Hofmann, Prof. Dr. T. Wiehe

Literature:
- Information about textbooks and other reading material will be given on the ILIAS representation of the course (https://www.ilias.uni-koeln.de/iliias/goto.uk.crs.3516840.html)

General time schedule: Weeks 1-14: Mon. and Wed. from 9:00 to 9:45 a.m. as well as Fri. from 11:00 to 11:45 a.m.; Week 15 (Mon.-Fri.): Preparation for the written examination

Introduction to the module: November 02, 2020 at 9:00 a.m. online (further information/link will be sent to your Smail-Account), for preparation to the module before this introduction see ILIAS link under literature.
Written examination: February 12, 2021, second/supplementary examination March 12, 2021; the latter date may vary if students and module coordinator agree. More details will be given at the beginning of the module.

Practical in Computational Biology

<table>
<thead>
<tr>
<th>Identification number</th>
<th>Work-load</th>
<th>Credit points</th>
<th>Term of studying</th>
<th>Frequency of occurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-B-C 2</td>
<td>180 h</td>
<td>6 LP</td>
<td>1st term or higher term of studying</td>
<td>Winter term</td>
<td>15 weeks</td>
</tr>
</tbody>
</table>

1 Type of lessons
Seminar/Project work

2 Contact times
60 h
Self-study times
120 h

Intended group size
24

2 Aims of the module and acquired skills
Students who successfully completed this module ...

- are able to perform simple bioinformatic analyses and related tasks on personal computers running the Linux operating system.
- have acquired practical skills in the use of common bioinformatic algorithms, computational sequence analysis tools as well as biological databases, and have acquired skills in the statistical evaluation of bioinformatic results.
- know the kind of biological problems that can be solved with bioinformatic tools, can choose appropriate methods and judge the statistical and biological significance of the results.
- can independently carry out small scientific projects related to the topic of the module.
- have learned how to present research results in oral and written form and to critically discuss scientific publications related to the topic of the module on a professional level.

3 Contents of the module
- Computer operating system Linux
- Programming with shell scripts and the statistical programming language R
- Use of biological databases
- Organization of bioinformatics/computational biology experiments
- Application of bioinformatic software to biological problems
- Studying, presenting and discussing scientific literature related to the topic of the module
- Writing of protocols and/or seminar papers

4 Teaching/Learning methods
- Project work; Seminar; Computer exercises; Training on presentation techniques in oral and written form

5 Requirements for participation
Enrollment in the Master’s degree course “Biological Sciences”; Simultaneous participation in the lecture module “Computational Biology”.

Additional academic requirements
Good quantitative skills and strong motivation to work quantitatively are/is required.

<table>
<thead>
<tr>
<th>6</th>
<th>Type of module examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weakly written homework exercises (100 % of the total module mark)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Requisites for the allocation of credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regular and active participation; Passed oral presentation; Weakly written homework exercises at least “sufficient”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Compatibility with other Curricula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Significance of the module mark for the overall grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6/114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Module coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. Thomas Wiehe, phone 470 1588, e-mail: twiehe@uni-koeln.de</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Participating faculty: Prof. Dr. A. Beyer, Prof. Dr. K. Hofmann, Prof. Dr. T. Wiehe</td>
</tr>
<tr>
<td></td>
<td>Literature: Information about textbooks and other reading material will be given on the ILIAS representation of the course (https://www.ilias.uni-koeln.de/ilias/goto_uk_crs_3516846.html)</td>
</tr>
<tr>
<td></td>
<td>General time schedule: Weeks 1-14: Tue. and Thu. from 2:00 to 4:00 p.m.</td>
</tr>
<tr>
<td></td>
<td>Introduction to the module: November 03, 2020 at 2:00 p.m., online (further information/link will be sent to your Smail-Account)</td>
</tr>
</tbody>
</table>

Aufbaumodul:

Das Aufbaumodul Computational Biology kann aus den Vorlesungen Advanced Bioinformatics, Computational Neuroscience, und Statistical Genetics and Epidemiology gewählt werden.

Advanced Bioinformatics

<table>
<thead>
<tr>
<th>Identification number</th>
<th>Workload</th>
<th>Credit points</th>
<th>Term of studying</th>
<th>Frequency of occurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-B-SM (C 2)</td>
<td>360 h</td>
<td>12 LP</td>
<td>1st or 2nd term of studying</td>
<td>Summer term, 2nd half</td>
<td>7 weeks</td>
</tr>
</tbody>
</table>
1. **Type of lessons**
 - a) Lectures
 - b) Practical/Lab
 - c) Seminar

 Contact times
 - 18 h
 - 99 h
 - 12 h

 Self-study times
 - 36 h
 - 159 h
 - 36 h

 Intended group size
 - max. 12

2. **Aims of the module and acquired skills**
 Students who successfully completed this module …
 - have acquired detailed knowledge about the experimental background of advanced methods in Bioinformatics and Computational Biology.
 - have gained insight into contemporary topics of bioinformatic and bio-statistical research and application to high-throughput data analysis.
 - are able to use the above mentioned systems to analyse genome-scale data, conduct downstream analyses, and to interpret and document their research.
 - can independently carry out small scientific projects related to the topic of the module.
 - have learned how to present research results in oral and written form and to critically discuss scientific publications related to the topic of the module on a professional level.
 - are able to transfer skills acquired in this module to other fields of biology.

3. **Contents of the module**
 - Modern bioinformatic methods for genome, transcriptome and proteome data analysis
 - Multi-variate and high-dimensional data analysis
 - Advanced regression methods, such as regularized linear models
 - Application of these methods to molecular biology and for understanding disease mechanisms
 - Handling of Unix based computer systems
 - Scientific programming

4. **Teaching/Learning methods**
 - Lectures; Practical/Lab (Project work); Seminar; Guidance to independent research; Training on presentation techniques in oral and written form

5. **Requirements for participation**
 Enrollment in the Master’s degree course “Biological Sciences”

 Knowledge and understanding of the content of the theory module “Computational Biology (C)” and basic programming skills in “R” are absolutely required for participation in the course. In cases of doubt, please contact the module coordinator (see 10).

6. **Type of module examinations**
The final examination consists of three parts: Two hours written examination about topics of the lectures and the practical/lab part (50 % of the total module mark), oral presentation (25 % of the total module mark) and written seminar paper (25 % of the total module mark).

7 **Requisites for the allocation of credits**
Regular and active participation;
Each examination part at least “sufficient” (see appendix of the examination regulations for details)

8 **Compatibility with other Curricula**
None

9 **Significance of the module mark for the overall grade**
12/114

10 **Module coordinator**
Prof. Dr. Andreas Beyer, phone 478-84429, e-mail: andreas.beyer@uni-koeln.de

11 **Additional information**
Subject module of the Master’s degree course “Biological Sciences”,
Specialization: (C) Computational Biology
Specialization: Prof. Dr. A. Beyer, Prof. Dr. A. Tresch, Prof. Dr. T. Wiehe
Literature:
- Information about textbooks and other reading material will be given on the ILIAS representation of the course (https://www.ilias.uni-koeln.de/ilias/goto_uk_cat_2815610.html)

General time schedule: Week 1-6 (Mon.-Fri.): Lectures, practical/lab, preparation for the seminar talk (topic and date will be arranged individually) and writing seminar paper; Week 7 (Mon.-Fri.): Preparation for the written examination

Note: The module does not contain hands-on laboratory work. The module contains computer-based practicals/research as a main component, using RStudio Server Pro.

Computational Neuroscience

<table>
<thead>
<tr>
<th>Identification number</th>
<th>Workload</th>
<th>Credit points</th>
<th>Term of studying</th>
<th>Frequency of occurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-B-SM (N 6)</td>
<td>360 h</td>
<td>12 LP</td>
<td>1st or 2nd term of studying</td>
<td>Summer term, 2nd half</td>
<td>7 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of lessons</th>
<th>Contact times</th>
<th>Self-study times</th>
<th>Intended group size*</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Lectures</td>
<td>30 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aims of the module and acquired skills

Students who successfully completed this module …

- have acquired a general overview over the field of computational neuroscience.
- can use Python for scientific programming, data analysis, and computational modeling as well as for visualization of data and analysis of results.
- have gained an understanding of how electrical properties of neurons can be represented mathematically.
- can describe aspects of neural network connectivity using graph theoretical concepts.
- can perform basic spiking neural network simulations with NEST.
- are able to extract and condense information from the neuroscientific literature.
- have improved their overall analytical skills.
- have learned how to present research results and to critically discuss scientific publications related to the topic of the module on a professional level.
- are able to transfer skills acquired in this module to other scientific fields.

Contents of the module

- Fundamentals and selected topics of computational neuroscience
- Scientific programming with Python
- Analysis of electrophysiological data with Python
- Spike train statistics and stochastic point processes
- Neural coding and plasticity
- Mathematical descriptions of neurons and networks
- Ordinary differential equations
- Graph theory of neural networks
- Phase oscillator models of neural interactions
- Introduction to the neural network simulation tool NEST

Teaching/Learning methods

- Lectures; Programming/mathematical exercises; Seminar;
 Guidance to independent research; Training on presentation techniques in oral and written form

Requirements for participation

Enrollment in the Master’s degree course “Biological Sciences” or in the Master’s degree course “Experimental and Clinical Neurosciences”
Basic knowledge of neurobiology is required, e.g. from the modules *Essentials in Neuroscience* or *Neural Function I: From experiments to Analysis*. Some programming experience in any language is highly recommended.

6 **Type of module examinations**

The final examination consists of three parts: Two hours written examination about topics of the lectures and the practical part (50 % of the total module mark), oral presentation about a scientific paper (25 % of the total module mark) and seminar paper (= written and programming exercises; 25 % of the total module mark).

7 **Requisites for the allocation of credits**

Regular and active participation; Each examination part at least “sufficient” (see appendix of the examination regulations for details).

8 **Compatibility with other Curricula**

Elective module in the Master’s degree course “Experimental and Clinical Neurosciences”.

9 **Significance of the module mark for the overall grade**

12/114

10 **Module coordinator**

Prof. Dr. Martin Nawrot, phone 470-7307, e-mail: mnawrot@uni-koeln.de

11 **Additional information**

Subject module of the Master’s degree course “Biological Sciences”, **Specialization**: (N) Neurobiology: Genes, Circuits, and Behavior

Participating faculty: Prof. Dr. S. van Albada, Prof. Dr. S. Daun, Prof. Dr. M. Nawrot, Dr. V. Rostami

Literature:

- Information about textbooks and other reading material will be given on the ILIAS representation of the course (https://www.ilias.uni-koeln.de/ilias/goto_uk_cat_2815610.html)

General time schedule: Week 1 (Mon.-Thu.): Seminar, lectures and practical sessions; Week 2-6 (Mon.-Thu.): Lectures and practical sessions; Week 1-6 (Fri.): Self-study time; Week 7 (Mon.-Thu.): Preparation for the written examination

Note: The module contains computer-based practical sessions as a main component.

Statistical Genetics and Epidemiology

<table>
<thead>
<tr>
<th>Identification number</th>
<th>Workload</th>
<th>Credit points</th>
<th>Term of studying</th>
<th>Frequency of occurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-B-SM (CG 2)</td>
<td>360 h</td>
<td>12 LP</td>
<td>1st or 2nd term of studying</td>
<td>7 weeks</td>
<td></td>
</tr>
</tbody>
</table>

* 8 students from the Master’s degree course “Biological Sciences” and 2 students from the Master’s degree course “Experimental and Clinical Neurosciences”
2 Aims of the module and acquired skills
Students who successfully completed this module …

• have acquired detailed knowledge on advanced techniques for obtaining data on genetic variation, concepts of epidemiology (with a particular focus on human genetic epidemiology), and statistical approaches to analyze these data in epidemiological studies.

• are able to conduct standard genetic epidemiological analyses, to address potential problems in these studies as well as to interpret their results and can independently carry out small scientific projects related to the topic of the module.

• have learned how to present research results in oral and written form and to critically discuss scientific publications related to the topic of the module on a professional level.

• are able to transfer skills acquired in this module to other fields of biology.

3 Contents of the module

• Forms of genetic variation used in genetic epidemiology; technologies for obtaining genetic data

• Epidemiological study designs, effect measures, genetic risk models

• Linkage and association analysis methods for genetic data

• Obtaining, imputing, analyzing and annotating next-generation sequencing (NGS) data, including rare variants and structural variation

• Analysis of methylation data

4 Teaching/Learning methods

• Lectures; Practical/Lab (Project work); Seminar; Computer exercises; Guidance to independent research; Training on presentation techniques in oral and written form

5 Requirements for participation

Enrollment in the Master’s degree course “Biological Sciences”

Additionally recommended: Good knowledge of quantitative methods is indispensable to participate in this module. Good mathematical skills are necessary. Basic knowledge of Linux and R is advantageous, but not mandatory.

6 Type of module examinations
The final examination consists of three parts: Two hours written examination about topics of the lectures (50% of the total module mark), oral presentation (25% of the total module mark) and written seminar paper (weekly, aggregate to 25% of the total module mark)

7 **Requisites for the allocation of credits**
Regular and active participation;
Each examination part at least “sufficient” (see appendix of the examination regulations for details)

8 **Compatibility with other Curricula**
None

9 **Significance of the module mark for the overall grade**
12/114

10 **Module coordinator**
Prof. Dr. Michael Nothnagel, phone 478-96847, e-mail: michael.nothnagel@uni-koeln.de

11 **Additional information**
Subject module of the Master’s degree course “Biological Sciences”,
Focus of research: (C) Computational Biology; (G) Genetics and Cell Biology

Participating faculty: Dr. B. Budde, Prof. Dr. M. Nothnagel, Prof. Dr. P. Nürnberg, Prof. Dr. M. Ruth-Schweiger

Literature:
- Further original papers will be handed out during the module

General time schedule: Weeks 1-6: Lectures (Mon., Tue., Thu. 2 h each), practical/lab (Mon., Tue., 2 h each, Thu. 4 h), writing seminar paper and preparation for the seminar talk (held in week 6); Week 7 (Mon.-Fri.): Preparation for the written examination. Dates for lectures and exercises may be shifted if agreed on during the module.

Note: The module contains hands-on laboratory work conducted individually and is taught in course rooms and research laboratories. The module contains computer-based practicals/research as a main component.

A.7 Erde und Atmosphäre

Die beiden Basismodule sowie das Aufbaumodul müssen durch jeweils eine Veranstaltung aus dem Vorlesungskatalog Erde und Atmosphäre abgedeckt werden.
Vorlesungskatalog Erde und Atmosphäre

<table>
<thead>
<tr>
<th>Bereich</th>
<th>Vorlesungen</th>
</tr>
</thead>
</table>
| Meteorologie | **Basis:** Numerische Simulation der Atmosphäre, Die Atmosphäre im Erdsystem, Meteorologische Beobachtungssysteme, Synoptische Meteorologie
 Aufbau: Atmospheric Boundary Layer, Physical Climatology, Atmospheric Dynamics and Modelling, Radiation, Clouds and Precipitation |
| Geophysik | **Basis:** Geophysik des Erdkörpers, Geophysikalische Fluidynamik, Geophysikalische Exploration und Plattentektonik, Geophysik der oberen Schichten, Umwelt- und Ingenieurgeophysik, Mineralphysik und Geomaterialien
 Aufbau: Electrical and Electromagnetic Methods of Applied Geophysics Seismology, Geophysics of the Solar System, Advanced Geophysical Field Course |

Es folgen die Modulbeschreibungen und Modultabellen im Anwendungsfeld Erde und Atmosphäre sortiert nach den Bereichen.

Bereich Meteorologie:

Basismodule:

<table>
<thead>
<tr>
<th>Numerische Simulation der Atmosphäre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennnummer: MN-GM-METSIA</td>
</tr>
<tr>
<td>Workload: 270 h</td>
</tr>
<tr>
<td>Leistungspunkte: 9 LP</td>
</tr>
<tr>
<td>Studiensemester: 1.-3. Semester</td>
</tr>
<tr>
<td>Häufigkeit des Angebots: Jedes 2. SoSe</td>
</tr>
<tr>
<td>Dauer: 1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
- a) Vorlesung
- b) Computer Labor (Praktikum)
- c) Übung

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>45 h</th>
<th>45 h</th>
<th>30 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium</td>
<td>60 h</td>
<td>45 h</td>
<td>45 h</td>
</tr>
</tbody>
</table>

geplante Gruppengröße: 20 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen
- Verständnis, wie atmosphärische physikalisch/chemische Prozesse numerisch modelliert werden können
- Kenntnis der Bestandteile von numerischen Atmosphären-/Klimamodellen
- Verständnis der Stärken und Schwächen der verschiedenen numerischen Methoden und Modellansätze
- Umsetzung von numerischen Methoden
- Fähigkeit atmosphärische Modelle anzuwenden und die Modellergebnisse kritisch zu beurteilen
- Grundlegende Fähigkeit atmosphärische Modelle zu entwickeln

3 Inhalte des Moduls
Primitive meteorologische Gleichungen
Vereinfachungen des Gleichungssystems
Projektionen und Gittersysteme
Numerische Methoden für Klima-, Wetter- und Atmosphärenmodelle
Numerische Stabilität und Genauigkeit
Einfache atmosphärische Modelle
Anfangs- und Randbedingungen
Zusammenfassung atmosphärischer Parameterisierung
Moderne numerische Wettervorhersagemodelle
Moderne Klimasimulationsmodelle

Lehr- und Lernformen
Vorlesung, Übung und Praktikum. Teilnahmepflicht in Übungen und Praktikum.

Modulvoraussetzungen
1. Einführung in die Geophysik und Meteorologie
2. Experimentalphysik I
3. Experimentalphysik II
4. Mathematische Methoden
5. Vektoranalysis und Lineare Algebra

Form der Modulabschlussprüfung
Abschlussklausur (bzw. der Wiederholungsprüfung).

Voraussetzungen für die Vergabe von Leistungspunkten
Das Modul ist ein kompensierbares Wahlmodul. Es ist bestanden, wenn:

- Die Abschlussklausur bestanden wurde. Bei nicht bestandener Abschlussklausur wird die Gelegenheit einer zeitnahen Wiederholungsprüfung (Klausur oder mündliche Prüfung) gegeben. Bei nicht bestandener Wiederholungsprüfung wird die Gelegenheit zu einer weiteren mündlichen Wiederholungsprüfung gegeben.

Die Modulnote ist die Note der Abschlussklausur (bzw. der Wiederholungsprüfung).

Verwendung des Moduls (in anderen Studiengängen)

Stellenwert der Modulnote für die Fachnote
9/114

Modulbeauftragte/r
Y. Shao

Sonstige Informationen
Synoptische Meteorologie

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-GM-METSYN</td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3. Semester</td>
<td>Jedes 2. WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1. **Lehrveranstaltungen**
 - a) Vorlesung
 - b) Seminar (Wetterbesprechung)
 - c) Übung

2. **Kontaktzeit**
 - 45 h
 - 45 h
 - 30 h

3. **Selbststudium**
 - 45 h
 - 60 h
 - 45 h

4. **geplante Gruppengröße**
 - 30 Studierende

2. Ziele des Moduls und zu erwerbende Kompetenzen

- Verständnis atmosphärischer physikalischer Prozesse die zur Wetterdiagnose und -Prognose relevant sind
- Kenntnis der Bestandteile und Werkzeuge moderner Wetterdiagnose und Wetterprognose
- Verständnis der Stärken und Schwächen der verschiedenen Vorhersagewerkzeuge
- Zu den zu erwerbenden Kompetenzen gehören Kommunikationsfähigkeit, rhetorische Fähigkeiten, wissenschaftliches Recherchieren, selbständiges Arbeiten, Hinterfragen wissenschaftlicher Erkenntnisse

3. Inhalte des Moduls

- Klassische Instrumente der Synoptik
- Wetterelemente und Größen (Wolken, Nebel, Sicht, Niederschläge, Inversionen)
- Luftmassen (Klassifikation und Transformation)
- Der Druck als vertikale Koordinate
- Grundgrößen der Synoptik
- Thermodynamische Diagrammpapiere, Nutzung des NinJo Systems zur Visualisierung meteorologischer Daten
- Temperaturadvektion, lokale Temperaturänderung und Baroklinität
- Kontinuitätsgleichung und Vergenzen
- Großskalige Wettersysteme (Tiefs, Hochs, Polarfront, Fronten, Rossby-Wellen, Tröge, Rücken, Cut-Offs, Kaltlufttropfen, etc.)
- Qualitative Deutung von Vorticity- und Omegagleichung im quasigeostrophischen System

4. Lehr- und Lernformen

Vorlesung, Übung (Teilnahmepflicht), Wetterbesprechung und Seminar (Teilnahmepflicht)

Übung: Hier steht die (Hand)-Analyse von Radiosondenaufstiegen, Wetterkarten (Höhen- und Bodenkarten) und Wetterlagen im Vordergrund. Darüber hinaus werden Übungen zur Thermodynamik, zu Luftmassen, Temperaturänderung und Wettervorhersage und synoptischer Dynamik gestellt.

Seminar: Das Seminar besteht aus der Wetterbesprechung. Zunächst werden die Studentinnen und Studenten an mehreren Seminarterminen gemeinsam in die Besprechung des Wetters eingeführt. Zusätzlich wird an einem Termin das meteorologische Applikations- und Präsentationssystem NinJo eingeführt. In der zweiten Hälfte des Semesters analysieren und besprechen die Studentinnen und Studenten eigenständig das
Wetter von mehreren Tagen.

5 **Modulvoraussetzungen**
- Einführung in die Geophysik und Meteorologie
- Experimentalphysik I
- Experimentalphysik II
- Mathematische Methoden
- Vektoranalysis und Lineare Algebra

6 **Form der Modulabschlussprüfung**
Abschlussklausur (bzw. der Wiederholungsprüfung).

7 **Voraussetzungen für die Vergabe von Leistungspunkten**
Das Modul ist ein kompensierbares Wahlmodul. Es ist bestanden, wenn:
- Erfolgreich und regelmäßig an den Vorlesungen und Übungen teilgenommen wurde (es müssen mindestens 50% der in den Übungen zu erreichenden Punkte erworben worden sein).
- Erfolgreich am Seminar (Wetterbesprechung) teilgenommen wurde, d.h. der Seminarvortrag mit bestanden „bewertet“ wurde. Bei nicht bestandenem Seminarvortrag kann dieser einmal im Semester wiederholt werden.
- Die Abschlussklausur bestanden wurde. Bei nicht bestandener Abschlussklausur wird die Gelegenheit einer zeitnahen Wiederholungsprüfung (Klausur oder mündliche Prüfung) gegeben. Bei nicht bestandener Wiederholungsprüfung wird die Gelegenheit zu einer weiteren mündlichen Wiederholungsprüfung gegeben.

Die Modulnote ist die Note der Abschlussklausur (bzw. der Wiederholungsprüfung).

8 **Verwendung des Moduls (in anderen Studiengängen)**

9 **Stellenwert der Modulnote für die Fachnote**
9/114

10 **Modulbeauftragte/r**
R. Neggers

11 **Sonstige Informationen**

Die Atmosphäre im Erdsystem

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-GM-ME-TATM</td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3. Semester</td>
<td>Jedes 2. WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>
1 Lehrveranstaltungen
 a) Vorlesung
 b) Seminar
 c) Übung

 Kontaktzeit
 45 h
 30 h
 45 h

 Selbststudium
 45 h
 45 h
 60 h

 geplante Gruppengröße
 20 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen
 • Verständnis der großen Phänomene und Zusammenhänge im Klimasystem der Erde
 • Das Verständnis der Interaktionen zwischen den Systemkomponenten (Ozean, Atmosphäre, Land)
 • Zu den zu erwerbenden und nicht fachspezifischen Kompetenzen gehören Kommunikationsfähigkeit, rhetorische Fähigkeiten, wissenschaftliches Recherchieren, selbständiges Arbeiten, Hinterfragen wissenschaftlicher Erkenntnisse

3 Inhalte des Moduls
 • Meteorologische Grundgleichungen
 • Koordinatensysteme und Projektionen
 • Skalenanalyse
 • Quasi-geostrophische Systeme
 • Barokline Instabilität
 • Energetik (Strahlungsgleichgewicht, Konvektions-Strahlungs-Gleichgewicht)
 • Wechselwirkungen zwischen Erdsystemkomponenten (Ozean-Atmosphäre Wärmemaschine)
 • Oszillationen- und Wellentheorie (Flachwassergleichungen)
 • Interannuale und interdekadische Variabilitäten
 • Einfache atmosphärische Modelle (Zellenmodelle)
 • Die Themen umfassen
 i) Kreisläufe der mittleren Breiten (Frontogenese, synoptische Wellenverstärkung);
 ii) Tropische Kreisläufe (Hadley-und Walker-Zirkulation);
 iii) Atmosphärische Schwingungen (ENSO, NAO, PNA, AO, QBO);
 iv) Luft Wellen (Rossby-Wellen, Kelvin-Wellen, Konvektion gekoppelte Wellen).
 Zuerst wird die für jedes Thema relevante Theorie eingeführt, die dann angewendet wird, um die damit verbundenen Phänomene zu erklären

4 Lehr- und Lernformen
 Vorlesung

5 Modulvoraussetzungen
 • Einführung in die Geophysik und Meteorologie
 • Experimentalphysik 1
 • Experimentalphysik 2
 • Mathematische Methoden
 • Vektoranalyse und Lineare Algebra
6 Form der Modulabschlussprüfung
Abschlussklausur (bzw. der Wiederholungsprüfung).

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das Modul ist ein kompensierbares Wahlmodul. Es ist bestanden, wenn
- Erfolgreich und regelmäßig an den Vorlesungen und Übungen teilgenommen wurde (es müssen mindestens 50% der in den Übungen zu erreichenden Punkte erworben worden sein).
- Erfolgreich am Seminar teilgenommen wurde, d.h. der Seminarvortrag mit bestanden „bewertet“ wurde. Bei nicht bestandenem Seminarvortrag kann dieser einmal im Semester wiederholt werden.
- Die Abschlussklausur bestanden wurde. Bei nicht bestandener Abschlussklausur wird die Gelegenheit einer zeitnahen Wiederholungsprüfung (Klausur oder mündliche Prüfung) gegeben. Bei nicht bestandener Wiederholungsprüfung wird die Gelegenheit zu einer weiteren mündlichen Wiederholungsprüfung gegeben.

Die Modulnote ist die Note der Abschlussklausur (bzw. der Wiederholungsprüfung).

8 Verwendung des Moduls (in anderen Studiengängen)

9 Stellenwert der Modulnote für die Fachnote
Gewichtet mit einem Faktor von 15/180.

10 Modulbeauftragte/r
R. Neggers

11 Sonstige Informationen
Literatur:
- D. Hartmann, Global Physical Climatology
- Peixoto and Oort, Physics of Climate
- D. Etling, Theoretische Meteorologie
- Holton, An introduction to dynamic meteorology

Meteorologische Beobachtungssysteme

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-GM-METBEO</td>
<td>270 h</td>
<td>9 LP</td>
<td>3. - 6. Semester</td>
<td>Jedes zweite SoSe</td>
<td>1 Semester</td>
</tr>
<tr>
<td>1</td>
<td>Lehrveranstaltungen</td>
<td>Kontaktzeit</td>
<td>Selbststudium</td>
<td>geplante Gruppengröße</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>a) Vorlesung</td>
<td>45 h</td>
<td>45 h</td>
<td>60 h</td>
<td>20 Studierende</td>
<td></td>
</tr>
<tr>
<td>b) Übung</td>
<td>45 h</td>
<td>30 h</td>
<td>45 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Praktikum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Überblick über meteorologische Messmethoden in Praxis und Theorie und das derzeitige Beobachtungssystem</td>
<td></td>
</tr>
<tr>
<td>• Kenntnis der Fehlercharakteristika verschiedener Messtechniken und Methoden zur Qualitätskontrolle</td>
<td></td>
</tr>
<tr>
<td>• Grundlegendes Verständnis von Fernerkundungsverfahren</td>
<td></td>
</tr>
<tr>
<td>• Kompetenz in der Handhabung meteorologischer Standard-Instrumente und deren computergestützter Analyse</td>
<td></td>
</tr>
<tr>
<td>• Interpretation von Meteosat Satellitenbeobachtungen und Wetterradarmessungen</td>
<td></td>
</tr>
<tr>
<td>• Methodenkompetenz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Globales meteorologisches Beobachtungsnetz</td>
<td></td>
</tr>
<tr>
<td>• Meteorologische Instrumentierung, Standards und Messtechnik (Kalibration, A/D-Wandlung, Datenübertragung, Qualitätssicherung)</td>
<td></td>
</tr>
<tr>
<td>• Messung der meteorologischen Grundgrößen Druck, Temperatur, Feuchte, Strahlung, Windrichtung und –stärke</td>
<td></td>
</tr>
<tr>
<td>• Moderne Wind- und Turbulenzmessung mit Ultraschall-Anemometern</td>
<td></td>
</tr>
<tr>
<td>• Grundlagen der Fernerkundung</td>
<td></td>
</tr>
<tr>
<td>• Beobachtung von geostationären Satelliten</td>
<td></td>
</tr>
<tr>
<td>• Radarmeteorologie zur Niederschlagsbestimmung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung, Übung (Teilnahmepflicht) und Praktikum (Teilnahmepflicht)</td>
<td></td>
</tr>
<tr>
<td>Übung: Bearbeitung von Übungszetteln zur Theorie von verschiedenen meteorologischen Sensoren, PC-Übungen zu Radar und Satelliten</td>
<td></td>
</tr>
<tr>
<td>Praktikum: Ausgewählte Laborversuche zu Temperatur, Druck, Wind, Feuchte, Niederschlag und Wolkenbildung,.... Die Studenten sollen selbständig Messungen und Fehleranalysen durchführen und dabei ihr theoretisch erworbenes Wissen anwenden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Einführung in die Geophysik und Meteorologie</td>
<td></td>
</tr>
<tr>
<td>• Experimentalphysik 1</td>
<td></td>
</tr>
<tr>
<td>• Experimentalphysik 2</td>
<td></td>
</tr>
<tr>
<td>• Mathematische Methoden</td>
<td></td>
</tr>
<tr>
<td>• Vektoranalysis und Lineare Algebra</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschlussklausur</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul ist ein kompensierbares Wahlmodul. Es ist bestanden, wenn:</td>
<td></td>
</tr>
<tr>
<td>- erfolgreich und regelmäßig an den Übungen teilgenommen wurde (es müssen mindestens 50% der in den Übungen zu erreichenden Punkte erworben worden sein). Das Bestehen der Übungen ist Voraussetzung zur Teilnahme an der Klausur.</td>
<td></td>
</tr>
</tbody>
</table>
Verwendung des Moduls (in anderen Studiengängen)

Stellenwert der Modulnote für die Fachnote
9/114

Modulbeauftragte/r
S. Crewell

Sonstige Informationen

Aufbaumodule:

<table>
<thead>
<tr>
<th>Type of Module</th>
<th>Module Code</th>
<th>Identification Number</th>
<th>Workload</th>
<th>Credit Points</th>
<th>Term</th>
<th>Offered Every</th>
<th>Start</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Module</td>
<td>AM-METCLOUD</td>
<td>MN-GM-METCLOUD</td>
<td>180 h</td>
<td>6 LP</td>
<td>1. – 3. Semester</td>
<td>WiSe</td>
<td>Winter Term Only</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Course Types
- a) Lectures
- b) Exercise

Contact Time
- 30 h
- 30 h

Private Study
- 60 h
- 60 h

Planned Group Size
- 15

2 Aims of the module and acquired skills
- Understanding the role of clouds for meteorology and in the climate system
- Knowledge of cloud microphysical processes
- Understanding the mechanisms for precipitation formation and efficiency
- Ability to interpret remote sensing observations of clouds and precipitation
- Understanding the links of cloud physics with dynamic meteorology, atmospheric radiative transfer and climatology.
- Computer practice for problem solving, critical assessment and discussion of
Contents of the Module

- Basic overview of clouds in the atmosphere
- Thermodynamic concepts
- Homogeneous & heterogeneous nucleation; Köhler theory
- Development of cloud droplet spectra (diffusional growth, collision-coalescence, entrainment, turbulence, breakup)
- Ice nucleation, ice crystal habits and ice microphysical processes
- Precipitation formation, thunderstorm development and life cycle, severe storms
- Modification of clouds
- In-situ measurements and remote sensing of cloud parameters including radar polarimetry
- Representation of clouds in numerical weather prediction and climate models, e.g. DWD models COSMO and ICON

Teaching Methods

Lectures and exercises - Exercises with compulsory attendance

Prerequisites (for the Module)

Formal: None

With regard to the contents: Basics of mathematics, physics and meteorology (mandatory)

Type of Examination

Written examination (graded).

Credits Awarded

Successful participation in the exercises (50 % of the possible points have to be obtained) and passing of the examination.

Compatibility with other Curricula

- Other modules of equal value can be admitted and announced by the examination board after agreement.
- Suitable as an elective course for mathematics, physics and geoscience students

Proportion of Final Grade

6/114

Module Coordinator

S. Crewell

Further Information

Recommended Literature:

Further Literature:

Pruppacher und Klett, 1997: „Microphysics of cloud and precipitation“ AOS Library,
Atmospheric Dynamics and Modeling

<table>
<thead>
<tr>
<th>Type of Module</th>
<th>Module Code</th>
<th>Module Code</th>
<th>AM-METADM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Module</td>
<td></td>
<td></td>
<td>AM-METADM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification Number</th>
<th>Workload</th>
<th>Credit Points</th>
<th>Term</th>
<th>Offered Every</th>
<th>Start</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-GM-METADM</td>
<td>180 h</td>
<td>6 LP</td>
<td>1. – 3. Semester</td>
<td>WiSe</td>
<td>WiSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Types</th>
<th>Contact Time</th>
<th>Private Study</th>
<th>Planned Group Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Lectures</td>
<td>30 h</td>
<td>60 h</td>
<td>15</td>
</tr>
<tr>
<td>b) Exercise</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
</tr>
</tbody>
</table>

1. **Aims of the module and acquired skills**
 Aims: Advanced understanding of atmospheric dynamics and modeling with emphasis on the physics core of global climate and numerical weather prediction models. Acquired skills: capacity for model applications, development and construction, and capacity for model data analysis and critical assessment.

2. **Contents of the module**
 - Review on atmospheric dynamics and governing equations
 - Review on atmospheric waves and implications to atmospheric modeling
 - Model closure
 - Parameterization of the atmospheric boundary layer
 - Parameterization of land and ocean surface processes
 - Parameterization of convection and clouds
 - Introduction to non-linear system theory and ensemble forecast
 - Weather and climate predictability

3. **Teaching Methods**
 Lectures and tutorials (Compulsory attendance in tutorial)

4. **Prerequisites (for the Module)**
 Undergraduate level understanding of general and theoretical meteorology.

5. **Type of Examination**
 Written examination (graded).

6. **Credits Awarded**
 Successful participation in the exercises (50 % of the possible points have to be obtained) and passing of the examination.

7. **Compatibility with other Curricula**
 - Other modules of equal value can be admitted and announced by the examination board after agreement.
• Suitable as an elective course for mathematics, physics and geoscience students

9 Proportion of Final Grade
6/114

10 Module Coordinator
Y. Shao, H. Elbern

11 Further Information
Recommended Literature:
Trenberth KE 2010: Climate system modeling. ISBN-10: 0521128374

<table>
<thead>
<tr>
<th>Atmospheric Boundary Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Module</td>
</tr>
<tr>
<td>Advanced Module</td>
</tr>
<tr>
<td>Identification Number</td>
</tr>
<tr>
<td>MN-GM-METABL</td>
</tr>
<tr>
<td>Course Types</td>
</tr>
<tr>
<td>a) Lectures</td>
</tr>
<tr>
<td>b) Exercise</td>
</tr>
</tbody>
</table>

2 **Aims of the module and acquired skills**
To create understanding of:
- the atmospheric boundary layer and its role in weather and climate;
- turbulent and convective flow;
- the turbulent kinetic energy budget and its use in determining atmospheric stability;
- the interaction between the atmospheric boundary layer and the Earth’s surface;
- the closure problem and associated parameterization techniques;
- boundary layer clouds

Acquired skills:
- Describing turbulent flow using perturbed prognostic equations
- Reynolds averaging
- Stability analysis using the dimensionless Richardson number and Obukhov length
- Parameterization of turbulent fluxes using K-theory
- Applying similarity theory to interpret measurements
- Experience with and interpretation of the bulk mixed-layer model
- Programming experience and presentation skills
- Interpretation of measurements of boundary-layer processes

3 Contents of the module
- Definition of the atmospheric boundary layer
- Mathematical tools (statistics)
- Governing equations of turbulent flows
- Prognostic equations for turbulent fluxes and variances
- Turbulent kinetic energy, stability and scaling
- Turbulence closure techniques
- Boundary conditions and external forcings
- Mathematical tools (time series analysis)
- Similarity theory
- Measurement and simulation
- The convective mixed layer
- Stable boundary layer
- Boundary layer clouds

4 Teaching Methods
Lectures and exercises. Exercises have a compulsory attendance. In addition a one-day excursion to the JOYCE observational site will be organized to perform and interpret measurements of boundary-layer processes (attendance recommended but not compulsory)

5 Prerequisites (for the Module)
Formal: None
With regard to the contents: Basic knowledge of the governing equations of atmospheric flow; Vector calculus; Linear algebra; Tensor notation

6 Type of Examination
Written examination (graded).

7 Credits Awarded
Successful participation in the exercises (50% of the possible points have to be obtained) and passing of the examination.

8 Compatibility with other Curricula
- Other modules of equal value can be admitted and announced by the examination board after agreement.
- Suitable as an elective course for mathematics, physics and geoscience students
9 | Proportion of Final Grade
---|---
6/114

10	Module Coordinator
R. Neggers

11	Further Information
Recommended Literature:

Radiation

<table>
<thead>
<tr>
<th>Type of Module</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Module</td>
<td>AM-METRAD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification Number</th>
<th>Workload</th>
<th>Credit Points</th>
<th>Term</th>
<th>Offered Every</th>
<th>Start</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-GM-METRAD</td>
<td>180 h</td>
<td>6 LP</td>
<td>1. – 3. Semester</td>
<td>WiSe</td>
<td>Winter Term Only</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Types</th>
<th>Contact Time</th>
<th>Private Study</th>
<th>Planned Group Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Lectures</td>
<td>45 h</td>
<td>60 h</td>
<td></td>
</tr>
<tr>
<td>b) Exercise</td>
<td>30 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1	Aims of the module and acquired skills
- Understanding the relevance of atmospheric radiation for weather and climate
- Understanding the interaction of atmospheric radiation with atmospheric gases, aerosols, clouds and precipitation
- Basic knowledge of modern remote sensing methods
- Solving problems in atmospheric radiation and cloud physics
- Computational techniques to address radiative transfer
- Programming experience and presentation skills
- Evaluation and interpretation of radiation sensor measurements
- Critical assessment and discussion of scientific work, presentation techniques, faculty of abstraction, conceptional, analytic and logical way of thinking

2	Contents of the module
- Basic concepts and definitions, EM waves, electromagnetic spectrum
- Reflection and refraction
- Thermal emission, Planck's function, radiation laws, brightness temperature
- Absorption and scattering by atmospheric gases and particles
- Radiative transfer in different spectral regions,
- Broadband fluxes and heating rates, atmospheric radiation budget
- Measurements of atmospheric radiation, ground-based & satellite
4 Teaching Methods

Lecture, exercises (compulsory attendance)

Exercises: Task sheets for strengthening the understanding of atmospheric radiation concepts, PC-exercises on radiative transfer & heating rates determined with the COSMO model, Evaluation, interpretation and presentation of broadband short- and long-wave measurements of atmospheric radiation (surface and satellite-based), Remote sensing applications.

5 Prerequisites (for the Module)

Formal: None

With regard to the contents: Basic knowledges in Classical mechanics, ordinary differential equations, Laplace equation in spherical coordinates.

6 Type of Examination

Written examination (graded).

7 Credits Awarded

Successful participation in the exercises (50 % of the possible points have to be obtained) and passing of the examination.

8 Compatibility with other Curricula

- Other modules of equal value can be admitted and announced by the examination board after agreement.
- Suitable as an elective course for mathematics, physics and geoscience students.

9 Proportion of Final Grade

6/114

10 Module Coordinator

U. Löhnert

11 Further Information

Physical Climatology

<table>
<thead>
<tr>
<th>Type of Module</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Module</td>
<td>AM-METCLIMATE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification Number</th>
<th>Workload</th>
<th>Credit Points</th>
<th>Term</th>
<th>Offered Every</th>
<th>Start</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-GM-METCLIMATE</td>
<td>180 h</td>
<td>6 LP</td>
<td>1. – 3. Semester</td>
<td>SoSe</td>
<td>Summer Term Only</td>
<td>1 Semester</td>
</tr>
<tr>
<td></td>
<td>Course Types</td>
<td>Contact Time</td>
<td>Private Study</td>
<td>Intended Group Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a) Lectures</td>
<td>30 h</td>
<td>60 h</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) Exercise</td>
<td>30 h</td>
<td>60 h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **Aims of the module and acquired skills**

Understanding of global climate system, processes and interactions; Correct interpretation of climate observations and simulations; Overview of climate modeling and analysis.

3. **Contents of the module**

- Climate as a dynamic system
- Atmospheric general circulation
- Global energy, water and carbon cycles
- Ocean dynamics and circulation
- Atmosphere – ocean interactions
- Atmosphere – land and ice interactions
- Regional and global reanalysis with examples from the HErZ project
- Large-scale interactive climate systems
- Introduction to global climate models
- Climate scenarios and projections

4. **Teaching Methods**

Lectures and tutorials (compulsory attendance in tutorial)

5. **Prerequisites (for the Module)**

Formal: None

Bachelor level meteorology, mathematics and scientific programming.

6. **Type of Examination**

Written examination (graded).

7. **Requisites for the allocation of credits**

Successful participation in the exercises (50 % of the possible points have to be obtained) and passing of the examination.

8. **Compatibility with other Curricula**

- Other modules of equal value can be admitted and announced by the examination board after agreement.
- Suitable as an elective course for mathematics, physics and geoscience students

9. **Proportion of Final Grade**

6/114

10. **Module Coordinator**

Y. Shao, F. Steffany
Further Information

Recommended Literature:

Trenberth KE 2010: Climate system modeling. ISBN-10: 0521128374

Bereich Geophysik:

Basismodule:

<table>
<thead>
<tr>
<th>Modul: Geophysik des Erdkörpers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennnummer</td>
</tr>
<tr>
<td>MN-GM-GEOERD</td>
</tr>
<tr>
<td>1 Lehrveranstaltungen</td>
</tr>
<tr>
<td>a) Vorlesung</td>
</tr>
<tr>
<td>b) Übungen</td>
</tr>
<tr>
<td>c) Praktikum</td>
</tr>
<tr>
<td>60 h</td>
</tr>
<tr>
<td>2 Ziele des Moduls und zu erwerbende Kompetenzen</td>
</tr>
<tr>
<td>3 Inhalte des Moduls</td>
</tr>
<tr>
<td>Entstehung des Sonnensystems</td>
</tr>
<tr>
<td>Entstehung/Evolution der Erde, und Erde Mond System</td>
</tr>
<tr>
<td>Schwerefeld der Erde: Theoretische Grundlagen, Zusammenhänge zwischen Gravitation, Erddynamik und Erdf orm</td>
</tr>
<tr>
<td>Gezeiten: Theoretische Grundlagen, Gezeiten der Meere, der Erde, der Atmosphäre Seismologie: Elastizitätstheorie, Wellentheorie, Aufbau der Erde, Erdbeben und Mechanismen</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Vorlesungen, Übungen (Teilnahmepflicht), Praktikum (Teilnahmepflicht)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Einführung in die Geophysik und Meteorologie</td>
<td></td>
</tr>
<tr>
<td>* Experimentalphysik 1</td>
<td></td>
</tr>
<tr>
<td>* Experimentalphysik 2</td>
<td></td>
</tr>
<tr>
<td>* Mathematische Methoden</td>
<td></td>
</tr>
<tr>
<td>* Vektoranalysis und Lineare Algebra</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Klausur</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul ist bestanden, wenn</td>
<td></td>
</tr>
<tr>
<td>* Erfolgreich und regelmäßig an den Übungen teilgenommen wurde (es müssen mindestens 50% der in den Übungen zu erreichenden Punkte erworben worden sein).</td>
<td></td>
</tr>
<tr>
<td>* Erfolgreich am Praktikum teilgenommen wurde. Dies bedeutet eine regelmäßige und aktive Teilnahme an den Praktikumsprojekten.</td>
<td></td>
</tr>
<tr>
<td>* Die Abschlussklausur bestanden wurde. Bei nicht bestandener Abschlussklausur am Ende des Semesters wird die Gelegenheit einer zeitnahen Wiederholungsprüfung (Klausur oder mündliche Prüfung) gegeben.</td>
<td></td>
</tr>
</tbody>
</table>

Die Modulnote ist die Note der Abschlussklausur (bzw. der Wiederholungsprüfung).

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul ist als Wahlfach im Bachelorstudiengang Physik geeignet. Für Nebenfächer kann der Prüfungsausschuss Ausnahmen von den o. a. Teilnahmevoraussetzungen zulassen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Modulnote für die Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/114.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Modulbeauftragte/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Saur</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Sonstige Informationen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>N. Sleep and K. Fujita, Principles of Geophysics, Blackwell Science</td>
<td></td>
</tr>
</tbody>
</table>

Weiterführende Literatur:
| P. Shearer, Introduction to Seismology, Cambridge University Press |
| R. Merrill et al., The magnetic field of the Earth, Accademic Press |
| W. Kertz, Einführung in die Geophysik I und II, B.I.-Hochschultaschenbuch |
Geophysikalische Fluidynamik: Ozeane, Atmosphäre und Weltraum

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungs-</th>
<th>Studien-</th>
<th>Häufigkeit</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-GM-GE-OFLU</td>
<td>270 h</td>
<td>Punkte</td>
<td>semester</td>
<td>des Angebots</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 Lehrveranstaltungen
 a) Vorlesung
 b) Übungen
 c) Praktikum

Kontaktzeit
 45 h
 30 h
 60 h

Selbststudium
 45 h
 45 h
 45 h

geplante Gruppengröße
 20 Studierende

2 Ziele des Moduls und zu erwerbende Kompetenzen

3 Inhalte des Moduls

Theoretische Grundlagen der geophysikalischen Fluidynamik:
- Einführung und Ableitung der Fluid-Gleichungen
- Eigenschaften geophysikalischer Fluide
- Einfache Lösungen geophysikalischer Fluid-Gleichungen
- Grundlagen elektrische leitfähiger Fluide

Ozeane:
- Eigenschaften und Struktur der Ozeane und Ozeanische Becken
- Strömungen der Ozeane
- Kopplung Ozeane/Atmosphäre

Erdatmosphäre:
- Struktur und Aufbau der Erdatmosphäre
- Temperaturhaushalt und Strahlungstransport
- Überblick wesentlicher dynamischer Eigenschaften der Atmosphäre

Erdionosphäre: Eigenschaften, Entstehung, Transport
Erdmagnetosphäre: Eigenschaften und Transportmechanismen
Sonne und Sonnenwind

4 Lehr- und Lernformen

Vorlesungen, Übungen (Teilnahmepflicht), Praktikum (Teilnahmepflicht)
Geophysikalische Exploration und Plattentektonik

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studien-semester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-GM-GEOEXP</td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3. Semester</td>
<td>Jedes 2. SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1. Lehrveranstaltungen
 a) Vorlesung

Kontaktzeit: 45h
Selbststudium
geplante Gruppengröße
<table>
<thead>
<tr>
<th>b) Übung</th>
<th>c) Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 h</td>
<td>45 h</td>
</tr>
<tr>
<td>30h</td>
<td>60 h</td>
</tr>
<tr>
<td>45h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Ziele des Moduls und zu erwerbende Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziel ist es, die Studierenden mit den Grundlagen der Seismik und Tiefenelektromagnetik vertraut zu machen und sie im Umgang mit typischen Auswerteprogrammen zu schulen. Im Vordergrund steht hierbei die Anwendung dieser Methoden auf die Erkundung tieferer Erdschichten. Neben der Kompetenz bezüglich der behandelten Methoden wird in diesem Modul auch die Fähigkeit zum selbständigen Arbeiten und zum Arbeiten in Gruppen (Praktikum) gefördert.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Inhalte des Moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung, Übung (Teilnahmepflicht), Praktikum (Teilnahmepflicht)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Geophysik und Meteorologie</td>
<td></td>
</tr>
<tr>
<td>Experimentalphysik 1</td>
<td></td>
</tr>
<tr>
<td>Experimentalphysik 2</td>
<td></td>
</tr>
<tr>
<td>Mathematische Methoden</td>
<td></td>
</tr>
<tr>
<td>Vektoranalysis und Lineare Algebra</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulabschlussprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul ist ein kompensierbares Wahlmodul. Es ist bestanden, wenn</td>
<td></td>
</tr>
</tbody>
</table>
| Erfolgreich und regelmäßig an den Vorlesungen und Übungen teilgenommen wurde (es müssen mindestens 50% der in den Übungen zu erreichenden Punkte erworben worden sein).
| Die Abschlussklausur bestanden wurde. Bei nicht bestandener Abschlussklausur wird die Gelegenheit einer zeitnahen Wiederholungsprüfung (Klausur oder mündliche Prüfung) gegeben. |
Die Modulnote ist die Note der Abschlussklausur (bzw. der Wiederholungsprüfung).

8 **Verwendung des Moduls (in anderen Studiengängen)**
Das Modul ist als Wahlfach im Bachelorstudiengang Physik geeignet. Für Nebenfächer kann der Prüfungsausschuß Ausnahmen von den o. a. Teilnahmevoraussetzungen zulassen.

9 **Stellenwert der Modulnote für die Fachnote**
9/114

10 **Modulbeauftragte/r**
B. Tezkan

11 **Sonstige Informationen**
Literatur:
Version: 2013-12-20 LW

Geophysik der oberen Schichten, Umwelt- und Ingenieurgeophysik

<table>
<thead>
<tr>
<th>Kennnummer</th>
<th>Workload</th>
<th>Leistungspunkte</th>
<th>Studiensemester</th>
<th>Häufigkeit des Angebots</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-GM-GEOING</td>
<td>270 h</td>
<td>9 LP</td>
<td>1.-3. Semester</td>
<td>jedes zweite SoSe</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

1 **Lehrveranstaltungen**
 a) Vorlesung
 b) Übung
 c) Praktikum

<table>
<thead>
<tr>
<th>Kontaktzeit</th>
<th>Selbststudium</th>
<th>geplante Gruppengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>45h, 45h, 30h</td>
<td>45 h, 60h, 45 h</td>
<td>20-40</td>
</tr>
</tbody>
</table>

2 **Ziele des Moduls und zu erwerbende Kompetenzen**
Die Studierenden sollen mit den wichtigsten geophysikalischen Methoden (Geoelektrik, Georadar, Elektromagnetik, Gravimetrie, Magnetik) zur Erkundung oberflächennaher Schichten vertraut gemacht werden. Sie sollen die Anwendungsbereiche der unterschiedlichen Methoden und besonders die Grenzen der Auswerteverfahren kennen lernen. Neben der Kompetenz bezüglich der behandelten Methoden wird in diesem Modul auch die Fähigkeit zum selbständigen Arbeiten und zum Arbeiten in Gruppen (Praktikum) gefördert.

3 **Inhalte des Moduls**
Zerstörungsfreie Erkundung des oberflächennahen Untergrundes (Deponien und Altlasten, Lokalisation kontaminierter Böden, Erkundung archäologischer Objekte, ingenieurgeophysikalische Fragestellungen, Hohlrumsuche, Grundwasserexploration, Fragestell-
Zur Lösung solcher Fragestellungen werden die Studierenden in die Grundlagen moderner und klassischer geophysikalischer Verfahren (Geoelektrik, Elektromagnetik und Georadar, Magnetik, Gravimetrie sowie Eigenpotential) eingeführt. Dazu werden die physikalischen Hintergründe der Methoden vermittelt. In den Übungen erarbeiten sich die Studenten den Umgang mit typischen Interpretationsmethoden und lernen im Rahmen der Übungen und des Praktikums die Anwendung ausgewählter geophysikalischer Messmethoden in der Praxis kennen.

4 Lehr- und Lernformen
Vorlesung, Übung (Teilnahmepflicht), Praktikum (Teilnahmepflicht)

5 Modulvoraussetzungen
- Einführung in die Geophysik und Meteorologie
- Experimentalphysik 1
- Experimentalphysik 2
- Mathematische Methoden
- Vektoranalysis und Lineare Algebra

6 Form der Modulabschlussprüfung
Klausur

7 Voraussetzungen für die Vergabe von Leistungspunkten
Das Modul ist ein kompensierbares Wahlmodul. Es ist bestanden, wenn
- Erfolgreich und regelmäßig an den Vorlesungen und Übungen teilgenommen wurde (es müssen mindestens 50% der in den Übungen zu erreichenden Punkte erworben worden sein).
- Die Abschlussklausur bestanden wurde. Bei nicht bestandener Abschlussklausur wird die Gelegenheit einer zeitnahen Wiederholungsprüfung (Klausur oder mündliche Prüfung) gegeben.

Die Modulnote ist die Note der Abschlussklausur (bzw. der Wiederholungsprüfung).

8 Verwendung des Moduls (in anderen Studiengängen)
Das Modul ist als Wahlfach im Bachelorstudiengang Physik geeignet. Für Nebenfächer kann der Prüfungsausschuss Ausnahmen von den o. a. Teilnahmevoraussetzungen zulassen.

9 Stellenwert der Modulnote für die Fachnote
9/114

10 Modulbeauftragte/r
B. Tezkan

11 Sonstige Informationen
Literatur:
Mineralphysik und Geomaterialien

<table>
<thead>
<tr>
<th>Type of Module</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basismodul</td>
<td>BM-SM8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification Number</th>
<th>Workload</th>
<th>Credit Points</th>
<th>Term</th>
<th>Offered Every</th>
<th>Start</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-GEO-SM8</td>
<td>270 h</td>
<td>9 LP</td>
<td>1. – 3. Semester</td>
<td>WiSe</td>
<td>Winter Term Only</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Types</th>
<th>Contact Time</th>
<th>Private Study</th>
<th>Planned Group Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung: Mineralphysik</td>
<td>a) 30 h</td>
<td>a) 60 h</td>
<td></td>
</tr>
<tr>
<td>b) Vorlesung: Realstruktur von (Geo)Materialien</td>
<td>b) 30 h</td>
<td>b) 60 h</td>
<td></td>
</tr>
<tr>
<td>c) Übungen</td>
<td>c) 45 h</td>
<td>c) 45 h</td>
<td></td>
</tr>
</tbody>
</table>

Ziele des Moduls und zu erwerbende Kompetenzen

Ziel des Moduls ist die Heranführung der Studierenden an Denk- und Arbeitsweisen, Fragestellungen und Bearbeitungsmethoden experimenteller Mineralphysik. Fertigkeiten für praktische Datenanalyse sowie Modellbildung werden an ausgewählten Systemen und Materialbeispielen vermittelt.

Kompetenzen:

- Fähigkeit zur Analyse komplexer Zusammenhänge, Problemidentifikation und Erarbeitung von Lösungsansätzen durch Anwendung angeeigneter Grundlagenkenntnisse.
- Praktische Befähigung für die Analyse und Darstellung von Daten und Modellen am Computer.

Inhalte des Moduls

Mineralphysik

Realstruktur von (Geo)Materialien

Übungen zu Mineralphysik und Realstruktur von (Geo)Materialien
Schwerpunkt in den Übungen ist das praktische Arbeiten mit Daten und Modellen am Computer mit Hilfe der Programmiersprache Python. Dabei werden Konzepte aus den Vorlesungen vertieft, Daten in 2D oder 3D dargestellt und numerische Methoden, wie z.B. die Modellanpassung (Fit) an experimentelle Daten, besprochen.

Praktische Anteile:
Praktische Übung mit numerischen Methoden am Computer

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr- und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dozentenpräsentation, angeleitete Datenanalyse und Modellierung am Computer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Modulvoraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Form der Modulprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klausur zu 1a und 1b</td>
</tr>
<tr>
<td></td>
<td>Berechnung der Modulnote: 100% aus Klausur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Vergabe von Leistungspunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestandene Klausur und Praktikumsprotokoll zu 1c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendung des Moduls (in anderen Studiengängen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B.Sc. Geowissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Stellenwert der Modulnote für die Fachnote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9/114</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Module Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. Sandro Jahn</td>
</tr>
</tbody>
</table>

| 11 | **Further Information** |
Seismology

<table>
<thead>
<tr>
<th>Course Types</th>
<th>Contact Time</th>
<th>Private Study</th>
<th>Planned Group Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Lectures</td>
<td>45 h</td>
<td>60 h</td>
<td>15</td>
</tr>
<tr>
<td>b) Exercise</td>
<td>30 h</td>
<td>45 h</td>
<td></td>
</tr>
</tbody>
</table>

Aims of the module and acquired skills

Understanding of physical processes that cause and transport seismic energy.

Acquired skills are the ability to determine basic parameters from seismic records for earthquake location. Basic knowledge of seismological measuring techniques and data processing.

In addition: communication skills, capacity for enthusiasm, self-dependency.

Contents of the module

- Elasticity theory and seismic waves
- Body waves and ray geometry
- Surface waves and free oscillations of the Earth
- Kinematic and dynamic effects of earthquake sources
- Seismometry and seismogram interpretation
- Seismotectonics
- Local earthquakes
- Earthquakes and buildings
- Time series analysis
- History of seismology
Successful participation in the exercises (50 \% of the possible points have to be obtained) and passing of the examination.

8 Compatibility with other Curricula
- Other modules of equal value can be admitted and announced by the examination board after agreement.
- Suitable as an elective course for mathematics, physics and geoscience students

9 Proportion of Final Grade
6/114

10 Module Coordinator
K.-G. Hinzen

11 Further Information
Compulsory Literature:

Additional Literature:

Module Name
Geophysics of the Solar System

<table>
<thead>
<tr>
<th>Type of Module</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Module</td>
<td>AM-GEOSOSYS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identification Number</th>
<th>Workload</th>
<th>Credit Points</th>
<th>Term</th>
<th>Offered Every</th>
<th>Start</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>MN-GM-GEOSOSYS</td>
<td>180 h</td>
<td>6 LP</td>
<td>1. – 3. Semester</td>
<td>WiSe</td>
<td>Winter Term Only</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Types</th>
</tr>
</thead>
</table>
a) Lectures
b) Exercise

<table>
<thead>
<tr>
<th>Contact Time</th>
<th>Private Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 h</td>
<td>60 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planned Group Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

2 Module Objectives and Skills to be Acquired
Students will get an overview of the planetary bodies in our solar system, their geophysical properties and interactions.
Acquired skills are mathematical/geophysical tools to describe: global properties of planetary bodies, dynamical evolution of planetary bodies.
Non-specific skills: Critical assessment of scientific knowledge.

3 Module Content
- Structure/Overview of the solar system
- Formation of the solar system
- Dynamics of the solar system:
 - Point masses and Kepler's laws
 - n-body problem
 - Dynamics on finite rigid bodies (e.g., precession and nutation)
 - Dynamics of non-rigid bodies (tidal interactions)
- Internal structure of the planets
- Planetary atmospheres
- Planetary magnetic fields, their space plasma environments including aurorae
- The sun
- Minor bodies: Comets, asteroids, ...
- Extra-solar planets

4 Teaching Methods
Lectures and exercises (exercises require attendance)

5 Prerequisites (for the Module)
Formal: None
With regard to the contents: Basic knowledges in Classical mechanics, ordinary differential equations, Laplace equation in spherical coordinates.

6 Type of Examination
Written examination (graded).

7 Credits Awarded
Successful participation in the exercises (50% of the possible points have to be obtained) and passing of the examination.

8 Compatibility with other Curricula
- Other modules of equal value can be admitted and announced by the examination board after agreement.
- Suitable as an elective course for mathematics, physics and geoscience students

9 Proportion of Final Grade
6/114

10 Module Coordinator
J. Saur

11 Further Information
Recommended Literature:
Advanced Literature: Baumjohann und Treumann, Basic Space Plasma Physics, Imperial College Press.

Advanced Geophysical Field Course

<table>
<thead>
<tr>
<th>Type of Module</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Module</td>
<td>AM-GEOAFC</td>
</tr>
</tbody>
</table>
Identification Number: MN-GM-GEOAFC

Workload: 180 h
Credit Points: 6 LP
Term: 1. – 3. Semester
Offered Every: SuSe
Start: Summer Term Only
Duration: 1 Semester

<table>
<thead>
<tr>
<th>Course Types</th>
<th>Contact Time</th>
<th>Private Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Seminar</td>
<td>30 h</td>
<td>60 h</td>
</tr>
<tr>
<td>b) Practical Training</td>
<td>30 h</td>
<td>60 h</td>
</tr>
</tbody>
</table>

Aims of the module and acquired skills

Practical experience in direct current resistivity and electromagnetic prospection techniques, survey design, target identification, resolution of the methods, data evaluation, 1D and 2D modelling. General overview of the methods and their strength and weaknesses.

Acquired skills:
- Ability to plan, conduct, protocol, interpret and document direct current resistivity and electromagnetic geophysical measurements
- Ability to choose the most appropriate method for a given exploration problem
- The ability in scientific writing and oral presentation is trained during the seminar

Contents of the module

- Direct Current Method with Multielectrode System (2D-DC)
- Radiomagnetotelluric (RMT)
- In-Loop Transient Electromagnetic Soundings (TEM)
- LOTEM data analysis and modelling
- Ground Penetrating Radar (GPR) / Ground conducting meters (HLEM)

Accounting for new developments in electromagnetic methods of applied geophysics and/or instrumentation the above methods may be replaced.

Teaching Methods

Seminar about methods and field course (compulsory attendance for all parts)

Prerequisites (for the Module)

Formal: None
Basics of electric and electromagnetic methods are strongly recommended.

Type of Examination

Written examination (graded).

Credits Awarded

1. Successful participation in the seminar about methods is prerequisite for admission to the written exam:
 - Short oral presentation of one method (ungraded)
Successful preparation/completion of the practical courses (testified ungraded)

Written report (20 pages maximum) of one method including results of the field survey (ungraded)

Each failed part can be repeated once during the semester before the written examination.

2. Successful participation of the written exam.

<table>
<thead>
<tr>
<th>8</th>
<th>Compatibility with other Curricula</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Proportion of Final Grade</td>
<td>6/114</td>
</tr>
<tr>
<td>10</td>
<td>Module Coordinator</td>
<td>B. Tezkan and R. Bergers</td>
</tr>
<tr>
<td>11</td>
<td>Further Information</td>
<td>Recommended Literature:</td>
</tr>
</tbody>
</table>